
Smart Contract Security

Thierry Sans

Beyond what we have see so far

Access Control
Incorrectly configured permissions allow unauthorized users to
access privileged functions

Frontrunning
Attacker can observe transactions in the mempool and can use
their payloads and/or race to exploit them

Other
Vulnerabilities

and
Attacks

Other Vulnerabilities

Fallback DOS

Reentrency (DAO hack)

Bad Delegate Call (Parity Wallet Hack)

Origin vs Sender

Timestamp-based Randomness

Fallback DOS - the vulnerability

Assuming the contract has enough funds, the transfer succeed:
• when the recipient is an EOA account
• when the recipient is a smart contract and its receive

(or fallback) function does not revert

Fallback DOS - The Attack

This will make the transaction
to fail (DOS) and no one else
can place a higher bid

The bid is placed
through the contract

Reentrancy - The Vulnerability

The transfer is called before
the balance is updated

Reentrancy - The Attack

Money is deposited and withdrawn
through the contract

Calls withdraw again when the money
is received (until draining all funds)

Famous Reentrancy Hacks

The DAO Hack (~$60M in 2016)
A recursive reentrancy call drained ETH before the balance
was updated

Harvest Finance (~$34M in 2020)
Flash loans plus reentrancy in the price oracle manipulation led
to draining assets from vaults

Reentrancy solution

➡ Use Open Zeppelin Reentrancy Guard contract

Delegate Call

delegatecall function is often used with libraries

๏ But it is often misunderstood

In a nutshell, allows one contract to call another contract and run its
code within the context of the calling contract ...

... but important details often not known
the storage layout (i.e order of variables) must be the same for the
contract calling delegatecall and the contract getting called

Famous Bad Delegate Call Hack

Parity Wallet (~$30M n 2017)
delegatecall to an uninitialized wallet library let attackers claim
ownership
https://blog.openzeppelin.com/parity-wallet-hack-reloaded

https://blog.openzeppelin.com/parity-wallet-hack-reloaded

Bad Delegate Call Solution

Avoid using libraries that update caller context (effect)

➡ Instead only use "pure" libraries with staticcall

origin vs sender

tx.origin
the EOA address that initiated the transaction

msg.sender
the address of the function caller

๏ They are not always equal since smart contracts can call
other smart contracts

Timestamp-based Randomness

Problem : there is no function random in solidity

๏ Bad solution : use block.timestamp or block.blockhash as
a source of randomness (that can be manipulated by the
validator)

✓ Good solution : use an random oracle e.g. Chainlink VRF
(Verifiable Random Function)

Beyond
Smart Contract
Vulnerabilities

Hacking humans i.e phishing

