Privacy and Zero-Knowledge Proofs

Thierry Sans

Zero-Knowledge Proofs

ZK proofs in a nutshell

A Zero-Knowledge Proof lets a **prover** proves to a verifier it <u>knows a</u> <u>secret without revealing it</u>

I. Proof generation

The prover generates a zero-knowledge proof with a secret input

2. Proof verification

The verifier verifies the proof without the secret input

The verifier does not know the secret (privacy) but is convinced that the prover knows the secret since it can prove it using a ZK-proof

Two types of zero-knowlege proofs

Interactive proofs

A back-and-forth conversation to prove something

Non-interactive proofs

A single message to prove something

• e.g. digital signature, **ZK-snarks**

Zero-Knowledge Proofs using zk-SNARK

Proof Generator G Proving Key p_k $pf = G(w_{priv}, w_{pub}, p_k)$ Proof Verifier V Verifying Key v_k V(pf, w_{pub} , v_k) = true

✓ Soundness

can always generate a valid proof pf knowing w_{priv} , w_{pub}

✓ Completeness

Cannot generate a valid proof pf knowing w_{pub} only

✓ Zero-Knowledge

Verifying pf using w_{pub} does not reveal anything about w_{priv}

Proof of Secret

The generator code is compiled as wasm module (Web Assembly)

The verifier code is compiled into a solidity smart contract

- → Alice can prove that she knows the secret input without revealing it
- ✓ The proof and the hash in the transaction does not reveal anything about the secret