Privacy
and
/ero-Knowledge Proofs

Thierry Sans



/ero-Knowledge Proofs



/K proofs in a nutshell

A Zero-Knowledge Proof lets a prover proves to a verifier it knows a

secret without revealing it

|. Proof generation
The prover generates a zero-knowledge proof with a secret input

2. Proof verification
The verifier verifies the proof without the secret input

= [he verifier does not know the secret (privacy) but is convinced
that the prover knows the secret since it can prove it using a ZK-proof



Two types of zero-knowlege proofs

Interactive proofs
A back-and-forth conversation to prove something

Non-interactive proofs
A single message to prove something

* e.g digital sighature, ZK=-snarks



/ero-Knowledge Proofs using zk-SNARK

Arithmetic Circuit C(Wpriv, Wpub)

A

Proof Generator G Proof Verifier V
Proving Key pk Veritying Key vk
pf: G(WPTiVa Wpub, pk) V(p fa Wpub, Vk) = true

v Soundness
can always generate a valid proof pt knowing Wpriv, Wpub

v Completeness
Cannot generate a valid proof pt knowing wpub only

v Zero-Knowledge
Veritying pt using wpub does not reveal anything about Wopriv



Proof of Secret

secret (private)

hash (public
hash = H(secret) | =
Proof Generator G (Was‘ry Proof Verifier V(solidity)

Proving Key px Verifying Key vi

AR , (&
g tx(pf, hash) A
pt = G(secret, hash, px) V(pt, Wpu, Vk) = true

The generator code I1s compiled as wasm module (VWeb Assembly)
The verifier code is compiled into a solidity smart contract
= Alice can prove that she knows the secret input without revealing it

v The proof and the hash in the transaction does not reveal anything about the secret



