Del

Decentralized Finance

Thierry Sans



Tradri (Traditional Finance) WS,  DeFi (Decentralized Finance)

» Centralized » Decentralized

* Many intermediaries * No intermediaries
(brOkerS, marker ma|<eI”S, C|eal”iﬂg (ﬂﬂom wallet tTo smart ceriEe: e
houses, exchanges) exchanges directly)

* More or less transparency - Fully transparent
(depends on regulations and (data and code written In clear on
oversight) the blockchain)

» KYC (Know Your Customer) * Permissionless



Bridging DeFi and lradri

Iwo operations bridge the gap between Defki and Tradhi

- On-Ramp
Purchasing cryptocurrency with actual FIAT™ currency

- Off-Ramp
£ lliesel ploclrrency to get actual FlAlF clrtERier

BRlATE s government-issued currency like CAD; USIDRESIEES



Dekl Summary

* Decentralized Exchanges (a.k.a Automated Market Makers)
* Def Staking

* Price Discovery Through Arbitrage

* Borrowing and Lending

* Flash Loans

* Stablecoins

* Yield Farming



Decentralized Exchanges

a.k.a Automated Market Makers



[Recap]| ERC-20 Tokens

A fungible token is a smart contract that maintains all user balances

mapping(address => uint256) balances

ERC-20 is a standard API for fungible tokens

function transfer(address to, uint256 value) returns (bool)
function transferFrom(address from, address to, uint256 value) returns (bool)

function approve(address spender, uint256 value) returns (bool)

function totalSupply() view returns (uint256)
function balanceOf (address owner) view returns (uint256)

function allowance(address owner, address spender) view returns (uint256)



Concept of Exchange (a.k.a market maker)

An exchange converts one currency to another given an exchange rate

How Is the exchange rate defined !

t can be set arbrtrary (unfair market)

t can be calculated dynamically based on supply/demand (fair market)

But how to calculate an exchange rate dynamically?

* some people wants to sell token Ta to buy Tg

- other people wants to sell token Tg to buy A

= an exchange connects buyers and sellers together

v The exchange rate Is the result of this dynamic process



Order Book-based a

bproach

(commonly used in TradFi)

Buyers

0.9

@

N

~

5]

0.8

r

Exchange

"B Asc

[0
|2

Current
Fxchange Rate

Sellers
13 @
&>
i (AR
=

1.2 -
lg'




CEX - Centralized Exchange

Can you create a platform that implements an automated order
book-based exchange!

= Yes, build a platform with :

a backend to collect user orders

a wallet to collect money (escrow transaction)

@ Limitation : centralized approach!
Users must trust the backend to do the right thing

and to be always available



BEschlralized version of an order book-Dasea
exchange

Can you write a smart contract that implements an automated
order book-based exchange!

= [echnically yes but no In practice because of gas

» Matching (1.e ordering) buy/sell orders Is expensive

» Placing, withdrawing and fulfilling orders Is expensive



A Better Approach : Liquidity Pools

(Exchange with two quuidity\ Buyers/sellers
pools for TaA and g
.| T
IS =
: ISSEE (E::??‘
IO T
19!

Current Exchange Rate Is
calculated based on the pool levels




Dynamic pricing using the
Constant Product Market Maker

The Constant Product Market Maker i1s about maintaining a value
k constant between two liquidity pools

k =vol(Ta) x vol(Ts)

= Using this constant, we can calculate swap values
.e what quantity of Tg must be withdrawn when adding adding
a given quantity of Ta to keep k constant (and vice versa)

v This determines the exchange rate



source: Global X

Calculating the exchange rate

Quantity of ETH in Liquidity Pool

Quantity of USDC in Liquidity Pool

* Swapping a amount of [ Afor b amount of Tg
Since vol(Ta) x vol(Tg) = (vol(Ta) +a) x (vol(Tg) - b)
Then b= (a X VOI(TB)) / (a i VOI(TA)) A liquidity pool

cannot be emptied
* Swapping b amount of Tgfor a amount of Ta

Since vol(Ta) x vol(Tg) = (vol(Ta) - a) x (vol(Tg) + b)
Thena=(bxvol(Ta))/ (b + vol(Tg))


https://www.globalxetfs.com/uniswap-the-basics/

—xample of exchange rate evolution

Swap Order Rate (Ts/Ta) vol(Ta)  vol(Tg)
12 0 120

L Y 0.625 |6 /.5 120

Eoln Bs7S 20 6 120
4 Tg 8TAa Gl Bl 10 120
2 1R Bl | 10 12 120

S E e Upis |6 TS 120



Side Effects of the Dynamic Pricing

When a user submits an exchange transaction,
the actual exchange may varies depending on other transactions executed before

= Slippage (common to TradFi and DeFi)
Difference between the exchange rate when quoted and the actual one when
executed

v Most DEXes implement a slippage protection mechanism that allow users to specity

a slippage tolerance limit

= Sandwich Attack a.k.a front-running attack (specific to Deki)
An attacker can monitor transactions in the mempool and emit concurrent
transactions that will take advantage of dynamic exchange rate

v Some DEXes implement swap protection mechanism (e.g Uniswap v4)



Slippage Example

Beforehand
* When Alice wants to do a swap, the pool contains |2 Ta and 10 Tg
* S0 she gets quoted that swapping 4 Ta will get her 2.5 Tg (0.62 exchange rate)

* She submits the swap transaction to the mempool allowing 20% slippage

Scenario #1
Bob submits a swap request for I Ta at the same time (1.e within the same block)

—However, Bob's transaction is executed before Alice's changing the levels of
iquidity polls and moving the current exchange rate down

* When Alice's request Is executed, she actually gets 2.1/ Tg (0.54 exchange rate)
v The slippage i1s 15% (0.62 /0.54 ~ |.15) and the swap Is executed

Scenario #2
* Bob submits a swap request for 2 Ta at the same time (1.e within the same block)
* When Alice's request Is executed, she actually gets .90 Tg (0.48 exchange rate)
® The slippage 1s 30% (0.62 / 0.48 = 1.30) and the swap Is not executed



Sandwich Attack Example

» Alice submits a transaction to the mempool to swap 4 Ta with a 20%

slip

M)

M b

Dage

ory monitors t

ory Immediate

ne mempool and sees Alice's transaction

y submits two transactions :

|. swap |.2 Ta (high tip)

iesiiap 0.9 Tg

(low tip)

* [ransactions are executed as follows:

|. Mallory's transaction (high priority) swaps 1.2 Tainto 0.9 Is

2. Alice’s transaction (medium priority) swaps 4 Tainto 2.12 Tg
(which is just within the 20% slippage limit)

3. Mallory's transaction (low priority) swaps 0.9 Tzginto 1.98 Ta

= Mallory pockets 0.78 Ta (risk free) with two simple transactions



Simple DEX Example

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
1k ol
112
113
114
115
116
117
i
119
120
128
122
123
124

function swap(address _fromToken, uint256 _amountIn) external returns (uint256 amountOut) {
require(_amountIn > @, "Amount must be greater than zero");
require(_fromToken == address(tokenl) || _fromToken == address(token2), "Invalid token");

bool isTokenl = _fromToken == address(tokenl);
IERC20 from = isTokenl ? tokenl : token2;

IERC20 to = isTokenl ? token2 : tokenl;

uint256 reservelIn = isTokenl ? reservel : reserve2;
uint256 reserveOut = isTokenl ? reserve2 : reservel; Deduct the fees

// deduct the fee from in
uint256 amountMinusFee = (_amountIn x (FEE_DIVISOR - FEE_PERCENT)) / FEE_DIVISOR;

// calculate the amount of token to swap out
amountOut = (amountMinusFee * reserveOut) / (reservelIn + amountMinusFee);

// update the reserves
if (isTokenl) {
reservel += _amountlIn;

Calculate the swap

reserve2 —= amountOut;
} else {
reserve2 += _amountIn; Update the pools
SRR =2 ELIEEE, Transfer the tokens

}

// transfer the tokens from user to contract
require(from.transferFrom(msg.sender, address(this), _amountIn), "Swap transfer in failed");
// transfer the tokens from contract to user

require(to.transfer(msg.sender, amountOut), "Swap transfer out failed");




DEX Staking



Incentive for Liquidity Pool Providers

To be efficient, liquidity pools must stash large volumes of

cryptocurrencies to absorb a great quantity of possibly
unbalanced transactions

SO0 what Is the Incentive to stake into DEX liquidity pools?

= Have a fee for every swap transaction and reward liquidity

bool providers (0.30% on Uniswap for instance)

@ [hisis "DEX Staking”
(not be confused with "Consensus Layer Staking” in PoS)



Liguidity Providers

Liquidity Proviaers (Exchange with two quuidity\ Buyers/Sellers
(€arn interest) pools for Ta and Ts s
& | g T &
(amy

- Ta e : -

, | |
TA,TB < > Z
g | y
: G Y

= [he liquidity providers provide both Taand g
and are rewarded from fees collected on every swap



Liguidity loken

Liguidity providers must add or withdraw Ta and Tg from/to the
pools while preserving the ratio (i.e the exchange rate)

= Have a token | that represents the contribution to the liquidity pools

v addingLiquidity mints I tokens representing the amount of
of tokens Ta and Tg deposited by the user to the pools

v removeLiquidity burns [| tokens allowing the user to
withdraws the corresponding amount of tokens Ta and g
(plus Interest generated from fees collected during staking period)



-Xample

addLiq(12,10) | 14400T. 2

addLiq(6, 5) 7,200 T |5 8 5
swap(2.06 Ta) 20 fEie 20.06 3.5

rmLig(7,200T,) 65(')325% 0 12 10.04 12.09



40
41
42
43
44
45
46
47
48
49
50
9l
52
o8
54
55
56
ol
58
59
60
61
62
63
64
65
66
67
68
69
70
7l
72
73
74
75
76
77
78
79
80
81
82
83
84
85

function addLiquidity(uint256 amountl, uint256 amount2) external {

require(amountl > @ && amount2 > @, "Amounts must be greater than zero");

uint256 correctAmount2;
uint256 liquidityMinted;
// check if the reserves are empty
if (reservel == 0 && reserve2 == 0) {
// if empty, the amount of token 1 and 2 set pool ratio (a.k.a the exchange rate)
correctAmount2 = amount2;
// and the amount of lpToken to mint is (amountlx amount2)”2
liquidityMinted = amountl * amount2 * amountl * amount2;
} else {
// calculate the right amount of token2 to add to preserve the liquidity pool ratio
correctAmount2 = (amountl x reserve2) / reservel;
require(amount2 >= correctAmount2, "Insufficient token2 amount provided");
amount2 = correctAmount2;
// calculate the amount of lpToken to mint
liquidityMinted = amountl x lpToken.totalSupply() / reservel;

}
uint256 amountlToPay = amountl;
uint256 amount2ToPay = correctAmount2;

uint256 tokenlReward;

uint256 token2Reward;

(tokenlReward, token2Reward) = calculateReward(msg.sender);
amountlToPay —= tokenlReward;

amount2ToPay -= tokenlReward;

// mint the lpToken
lpToken.mint(msg.sender, liquidityMinted);
isStaking[msg.sender] = true;

// update rewardPerTokenPaid
rewardPerTokenlPaid[msg.sender] = rewardPerTokenl;
rewardPerToken2Paid[msg.sender] rewardPerToken2;

// update the reserves
reservel += amountl;
reserve2 += correctAmount2;

// transfer the funds from user to contract

require(tokenl.transferFrom(msg.sender, address(this), amountlToPay), "Tokenl transfer failed");
require(token2.transferFrom(msg.sender, address(this), amount2ToPay), "Token2 transfer failed");



86

87 function removelLiquidity(uint256 1pAmount) external {

88 require(1lpAmount > @, "Invalid LP token amount");

89 require(1lpToken.balance0Of(msg.sender) >= 1pAmount, "Insufficient LP balance");
90

91 // calculate the amounts of tokenl and token 2

92 uint256 totalSupply = 1pToken.totalSupply();

93 uint256 amountl = (1lpAmount * reservel) / totalSupply;

94 uint256 amount2 = (1lpAmount * reserve2) / totalSupply;

95

96 uint256 tokenlReward;

97 uint256 token2Reward;

08 (tokenlReward, token2Reward) = calculateReward(msg.sender);

99

100 // update rewardPerTokenPaid

101 rewardPerTokenlPaid[msg.sender] = rewardPerTokenl;

102 rewardPerToken2Paid[msg.sender] = rewardPerToken2;

103

104 // update the reserves

105 reservel -= amountl;

106 reserve2 —= amount2;

107

108 // burn the lpTokens

109 lpToken.burn(msg.sender, 1pAmount);

110 isStaking[msg.sender] = (1pToken.balanceOf(msg.sender) > 0);

111

112 // transfer the funds from contract to user

113 require(tokenl.transfer(msg.sender, amountl + tokenlReward), "Tokenl transfer failed");
114 require(token2.transfer(msg.sender, amount2 + token2Reward), "Token2 transfer failed");
115 }




The risk Behind Staking a.k.a Impermanent Loss

When liquidity provider deposits 10 Ta and 5 1B, the exchange rate is 2

= 50 the amount deposited is worth 20 Ta when staking

When the liquidity providers withdraws the whole stake for |4 Ta and 3.5
i GERtR e e<change rate Is 4

= [his amount is worth 28 T a after withdrawing

However, the initial stake is now worth 30 Ta without
staking

@ [hisisan impermanent loss
[t I1s an unrealized loss until the liquidity provider withdraws Its stake



Automatic Price Discovery



In a decentralized world

mm A

O

I\
it it R 1
EX # | Ex #2 EX #3
st 2 1w BIEE
(step |) %
(step 4) $1.18 7 (Step 2 E il e

(‘ Alice has made $0.18 risk

free benefit

= Alice can repeat the operation over and over while there are
exchanges with different rates



The concept of Arbitrage

Arbitrage (common to Iradri and Dek)
Explorting price differences between markets

= [raders do take advantage o

" rate differences between

exchanges to make risk-free

SFoiiiE



Automatic Price Discovery
resulting from Arbitrage

As traders take advantages of arbitrage, the market as a whole
move to a state where no one can make these profits
(also called Nash Equilibrium)

o [Fe@nanges converge to the same rate
a.k.a the market price

v This process Is called automatic price discovery



Flash Loans



Lending and Borrowing

| have found a great arbitrage | have a good amount of Ta that

between T and Tg but | do not
have any token T a to start with

you can borrow and repay with
| % Interest

S (step |) borrow 100 (o~
Made T a profit ‘(’1' <( P ) %ﬁj
JiE | >

(step 4) repay |0

Made T profit

Cien ) (step 3)
swap [ afor g swap [gforTa




Concept of Flash Loan

@ Problem :how to make sure that the borrower will repay the
loan?

v Solution : borrow and repay the token within the same
transaction

= Flash Loan



32
33
34
35
36
37
38
39
40
41

Smart contract aggregator

Borrow token

function borrow(uint256 amount, Call[] memory calls) external {
require(token.transfer(msg.sender, amount), "Token transfer failed");
for (uint256 i = @; i < calls.length; i++) {

require(success, "Call failed");

}
uint256 amountWithInterest = amount * (RATE_DIVISOR + INTEREST_RATE) / RATE_DIVISOR;

Repay token

It the token Is not repaid (with interest) , the last transaction fails
v Then all other transactions including borrowing the token fails as well

= [his is risk free for the lender

Execute other transactions
(bool success, ) = calls[il.target.call(calls[i].callData); (arbrtrage for instance)

require(token.transferFrom(msg.sender, address(this), amountWithInterest), "Token transfer failed");



Arbitrage Example

K4lv
42
43
44
45 v
46
47
48 A
49
50
51v
52
53
54 A
55
56
57
58
59
60 A

Borrower has no token

it("Should do a flash loan arbitrage", async function () {

});

expect(await tokenl.balanceOf(borrower.address)).to.be.eq(0);

await tokenl.connect(borrower).approve(await dexl.getAddress(), 100);
const calll = {

target: await dexl.getAddress(),

callData: dexl.interface.encodeFunctionData("swap", [borrower.address, (await tokenl.getAddress()), 100])

};

await token2.connect(borrower).approve(await dex2.getAddress(), 125);
const call2 = {

target: await dex2.getAddress(),

callData: dex2.interface.encodeFunctionData("swap", [borrower.address, (await token2.getAddress()), 125])
b

await tokenl.connect(borrower).approve(await flash.getAddress(), 101);
await flash.connect(borrower).borrow(100, [calll, call2]);

Borrow 100 to do swaps | & 2

expect(await tokenl.balanceOf(borrower.address)).to.be.gt(0);

Borrower has made token profit



Borrowing and Lending



(non-flash) Borrowing and Lending

s 1t possible to borrow money now (block n) and repay it with
interest later (block n+1) ¢

® Problem : we need to make sure that the borrower repays
the loan (somehow) before the maturity date




Concept of Lending Market

Lenders make money available
to borrow and earn interest

L

e

N

~

Lending Market
connects lenders
and borrowers

&

4 @

=

-

N d
- =

\ 3/

Borrowers can take out a
loan and repay 1t with interest

before maturity date



The concept of collateral

VWhat If a borrower defaults on a loan!?

= \When taking out a loan, the lender must deposit a
collateral |.c assets that serve as a security deposit

& R

deposit 20 T s
Lending Market

2

plelaewe | i

- L/




Undercollaterized vs overcollaterized

Undercollaterized
Borrower must provide a collateral that is less than the value of the loan

val(collateral) < val(loan)

Overcollaterized
Borrower must provide a collateral that is more than the value of the loan

val(collateral) > val(loan)

® Problem : over time the value of the loan might increase compared to the
value of the collateral (because of exchange rate)
= An undercollaterized loan might become further undercollaterized

= An overcollaterized loan might become undercollaterized



Collateral factor

Throughout the whole loan period, the value of collateral must
not fall below a threshold called collateral factor

= |.e val(collateral) x k > val(loan) must remain true

This factor Is usually
« >] for undercollaterized loan

e @ /crecollaterized loan



The role of collateral

After taking a loan, two things can happen:

|. The borrower repays the loan with interest

= (Collateral 1s returned

2. The borrower defaults (1.e does not repay before maturity date)

= [he loan is liquidated (i.e repaid with collateral) with a penalty

3. Before maturity date, the value of collateral falls under

= [he loan i1s liquidated with a penalty



CeHl vs Detl

CeFi - both undercollaterized and overcollaterized lending
schemes are common (enabled by laws and regulations)

* e.g mortgage (overcollaterized)

EEIeRGredil calrd (Undercollaterized)

DeFi - only overcollaterized lending schemes are common

* e.g Aave, Compound, Curve Finance



-xample of Overcollaterized Loan

A borrower deposits $15, 000 USDC as collateral to borrow 5 ETH (priced at
$2,000 USD each) in lending market with:

» Collateralization required: |.5 (150%)
» (Collateralization factor: 1.2 (120%)

* Penalty: 0.1 (10%)

* Interest rate: 0.05 (5%)

What can happen:
» Either the borrower repays 5,25 ETH and $15,000 USDC are returned

SR @ thie borrower defaults when | ETH 1s $2,200 USDC, $12,1100"USDE R e RN
ETH) are liquidated and $2,900 USDC are returned to the borrower

« Or ETH nises above $2,400 (10,000*1.2/5), $13,200 USDC are liquidated and
$1,800 USDC are returned to the borrower



Why overcollateralized borrowing makes sense

Why taking an overcollaterized loan when you can just exchange the collateral

= |n a nutshell : shorting
.e betting that the value of an asset will go down

Example
|. Borrow 5 ETH (I ETH - $2,000) with $15,000 collateral
2. and sell it right away to cash out $10,000
3. Wait for ETH to decrease to $1,500 and buy back 5.5 ETH for $/,875
4. Repays 5.25 ETH and get the full collateral back

v The borrower pockets $2,125



Implementing a Deri Lending Market

L enders s

g g ;E deposit Ta
>
<

earn | a Interest

NS

N

>

kA

L 1 <

Lending Market

buy liguidated T a loan
URlREEEESE

Liguidators §(

v

get g collateral
+ penalty

)

=) Borrowers
S,
g deposit Tg collateral
2
take Ta loan
Y
< >
g % 19'
A
\4
(@‘.

\/

= [he liquidators are important to make sure the I A pool does
dry up when borrowers are defaulting



L iInear Variable Interest Rate

When the supply of Ta Is low, raise interest rate to
« decrease the demand of loans

» and increase the incentive for lenders to stake Ta
= Have a interest rate that depends on the utilization of the Ta pool
Utilization ratio U = totalBorrow / totalDeposit

Borrow rate R= baseRate + U

v The interest rate varies on every deposit, loan and liquidation transactions



Slopped Variable Interest Rate
Used in common Derl Lending Markets such as AAVE and Compound

Same Idea but the goal Is to reach an optimal pool utilization
(usually 80% by empirical model)

= [he model takes into account how fast the interest rate should varies
(a.k.a slope) to reach the optimal utilization rate

» Slopel defines how the borrow rate increases as utilization rises up
to the optimal utilization rate (to incentivize borrowing)

* Slope2 Defines how sharply the borrow rate increases after the
optimal utilization point (to penalize borrowing)

Base Rate + U x Slope,, it U < Upgyp

Base Rate + Slope; - 2= % Slope,, U > Uy

Borrow Rate =
1— U,y




Stablecoins



Concept of Stablecoin

A cryptocurrency designed to trade at a fixed price
aka pegged price

Lieelim =4 USD

Goals
* Integrate real-world currencies into on-chain applications

* Enable people without easy access to USD, to hold and
trade a USD-equivalent asset



Peg Stabilization Mechanism

Maintaining the peg means maintaining the exchange rate between
the stablecoin (5C) and rts value (USD)

= |{ SC loses Its peg, the goal Is to create arbitrage opportunities to
restore the peg

- I it trades above its peg (ec.g., |.05 USD per SC), users can
mint stablecoins cheaply and sell them at a profit

- It it trades below its peg (c.g., 0.95 USD per 5C),
users can buy SC on the market and repay their debt at a

discount



Centralized vs decentralized stablecoins

Centralized stablecoins can be:
« overcollaterized such as USDC, USDT

« undercollaterized such as some of the
Central-Bank Digital Currency (CBDC)

= Relies on trusted-third party to maintain the peg

Decentralized stablecoins are necessarily overcollaterized
such as DAl (MakerDAQO)

= Relies on smart-contract algorithm to maintain the peg



Decentralized Stablecoin

Decentralized Stablecoin are implemented as a Collateralized Debt
Position (similar to borrowing schemes)

» Users can borrow (actually mint) SC by depositing collateral

 Users can get collateral back by repaying (actually burn) SC

What Is the Interest for users!
- take part of trading activities

+ malintain liquidity while the value of the collateral could increase

» earn Interest while holding (e.g stability fee in DAI)



40
41
42
43
44
45
46
47
48
49
50
51
52

Minting Stablecoin

function depositCollateral(uint256 amount) external {
require(amount > @, "Amount must be greater than zero");
require(collateralToken.transferFrom(msg.sender, address(this), amount), "Token transfer fail");
deposits[msg.sender] += amount;

}

function mint(uint256 stablecoinAmount) external {
uint256 collateralValue = deposits([msg.sender] * oracle.getExchangeRate() / RATE_DIVISOR;
uint256 requiredCollateral = (stablecoinAmount * COLLATERALIZATION_RATIO) / RATE_DIVISOR;
require(collateralvValue >= requiredCollateral, "Insufficient cojllateral");
stableToken.mint(msg.sender, stablecoinAmount);

Overcollaterization

T SC trades above its peg,
users can mint SC cheaply and sell them at a profit



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Burning Stablecoin

function burn(uint256 stablecoinAmount) external {
require(stableToken.balance0f(msg.sender) >= stablecoinAmount, "Insufficient balance");
stableToken.burn(msg.sender, stablecoinAmount);

}

function withdrawCollateral(uint256 amount) external {
uint256 exchangeRate = oracle.getExchangeRate();
uint256 collateralValue = deposits[msg.sender] * exchangeRate / RATE_DIVISOR;
uint256 stablecoinDebt = stableToken.balanceOf(msg.sender);
uint256 requiredCollateral = (stablecoinDebt * COLLATERALIZATION_RATIO) / RATE_DIVISOR;
deposits[msg.sender] -= amount;
require(collateralToken.transfer(msg.sender, amount), "Token transfer fail");

It SC trades below its peg,
users can buy SC on the market and repay their debt at a discount



Liguidation
as an additional incentive to burn

function liquidate(address user) external {
uint256 exchangeRate = oracle.getExchangeRate();
uint256 collateralValue = deposits[user] * exchangeRate / RATE_DIVISOR;
uint256 stablecoinDebt = stableToken.balanceOf(user);
uint256 requiredCollateral = (stablecoinDebt * COLLATERALIZATION_RATIO) / RATE_DIVISOR;

stableToken.burn(user, stablecoinDebt);

require(collateralToken.transfer(msg.sender, deposits([user]), "Token transfer fail");
deposits[user] = 0;

It SC trades below its peg,
iquidation creates a virtuous circle in which users can buy SC to
S ek collateral to buy SC to ... until the peg Is restored



Yield Optimization

a.k.a yeld farming
a.k.a ylield optimization



Concept of Yield Optimizer

A yleld optimizer takes advantages of Deri protocols to maximize
revenue by doing

» Multi-protocol and multi-chain optimization
By taking advantages of multiple protocols through multiple
chains

- Auto-compounding
By automating harvesting rewards and reinvesting them

= Concept of yield optimization strategy
(iImplemented as a smart contract)



Benefits for Users

- Saves gas fees
Users don't need to manually compound their yields

* Fund pooling
o mutualize assets to increase the yield

- Maximizes returns
Strategies optimize compounding frequency

- Security & decentralization
Smart contracts handle the funds, reducing custodial risks



Anatomy of a Yield Optimizer Contract

© 00 N OO U & W N =

B R R R R R R
O N A W N R

|

[
~

=
O 00

| | o Manage assets
contract SimpleYieldOptimizer { Usually implemented as a vault (ERC-4626)

constructor() {

}

function deposit(uint256 amount) external {

}

function withdraw(uint256 amount) external {

}

function harvest() external {

Implements the strategy
Called by an automator off-chain at
optimal intervals




Going Further



CEX vs DEX
(by CoinMarketCap in March 2025)

#w Exchange Trading volume(24h) g Name Trading volume(24h)
1 Binance $21,898,243,379 1 % Uniswap v3 (Ethereum) $979,390,648
2 st Bybit $3,001,354,147 2 e dYydX v4 $256,993,388
3 C coinbase Exchange $4,177,804,769 3 ® Curve (Ethereum) $206,536,401
4 o OKX $3,534,845,459 4 % Uniswap v2 $132,328,884

5 @ upbit $2,882,840,442 5 €) THoRchain $106,283,253
6 . Bitget $3,240,544,353 6 e Balancer v2 (Ethereum) $35,935,737
7 4\ MEXC $4,147,782,955 7 O PancakeSwap v3 (Ethereum) $21,931,694
8 & KuCoin $1,040,761,782 8 © Dpecate $6,342,019
9 " Gate.io $3,076,817,249 9 e SushiSwap (Ethereum) $2,615,430
10 @) «raken $1,488,212,060 10 J\ solidly (Ethereum) $2,382,609

® Exchanges are not very decentralized



op Lending and Borrowing Markets
oy CoinMarketCap in March 2025)

Name Market Cap

@ Aave AAVE $3,268,739,511
() Maker MKR $1,118,621,954
(19 Kava kava $488,956,442
‘ Compound COMP $449,079,364

) Morpho MORPHO $395,917,433



op Stablecoins
oy CoinMarketCap in March 2025)

" Name Market Cap
4 € Tether USDT $142,738,775,867
7 @) usbc usbc $57,240,707146
25 (@) EthenausDe UsDe $5,427,410,168
Decentralized
27 €5 Dpai DAl $5,365,865,616

a6 (@) First Digital USD FDUSD $2102,765,884



Yield Optimizer
(by CoinMarketCap in March 2025)

Name

C ConvexFinance CVX

@ yearn.finance YFI

> Bella Protocol BEL

1}’ Badger DAO BADGER

@) THENA THE

€ stella ALPHA

. Inverse Finance |NV

os Harvest Finance FARM

W Beefy BIFI

Market Cap

$219,105,802

$186,682,190

$67,337176

$60,914,547

$40,214,91

$38,690,813

$20,240,879

$19,253,722

$16,552,946



Other Deli protocols

Decentralized Derivatives
Decentralized Indices

Decentralized Insurance (e.g. Nexus Mutual)



