
ETHEREUM OVERVIEW

Created: Sept 2023
Last Edited: Sept 2023

UofT: CSCD71F22
-David Liu, Founder of dApp Technology Inc.

First concept of decentralization

Focus on cryptocurrency

Emergence of cryptocurrency wallets, mining rigs,

mining software and decentralized blockchain

computer

Notable projects:

ECash (by DigiCash 1983)

Bitcoin (by Cypherpunks 2009)

BLOCKCHAIN 1.0

Limited Transactions types

Limited Data Types

Small data storage size

Constraints:

Compute functionality off-chain

Mitigation:

BLOCKCHAIN 1.0 APPS

Notable projects:

Ethereum (Blockchain by Vitalik Buterin 2013)

Uniswap (ETH dApp by Hayden Adams 2018)

Emergence of Decentralized Code (Smart Contract)

Mass adoption of Decentralized Applications (dApps)

BLOCKCHAIN 2.0

Node

Node
Node

Node

NodeNode

Node

ETHEREUM NETWORK

Each Node stores a portion of the blockchain
and runs the EVM to execute code from Smart
Contracts
Ethereum Validators receives data from the
Nodes and adds new blocks to the blockchain

ETHEREUM QUICK NOTES

First Decentralized Blockchain with Smart
Contracts (Turing Complete)
Programs run on the Ethereum Virtual Machine
(EVM)
Ether is the native token used to pay for
transactions (Gas Fees)
Largest adopted blockchain for dApps and
largest community support
Solidity is the most popular coding language

Sept 23, 2023
DeFi Llama

ETHEREUM NETWORK (SEPT 2023)

Sept 2023
ethereum.org

ETHEREUM STATS (SEPT 2023)

Sept 2023
https://beaconscan.com/statistics

ETHEREUM STATS (SEPT 2023)

Sept 2023
ethereum.org

ETHEREUM TIMELINE

Sept 2023
https://content.bitazza.com/eth1-0-2-0/

Blockchain Development

FULL STACK

Frontend Backend Database

FULL STACK EXAMPLE

Frontend Backend Database

ReactJS
Sass
Axios

Storybook

ExpressJS
Prisma

Open API

PostgreSQL

BLOCKCHAIN FULL STACK

Frontend Backend Database

Blockchain

BLOCKCHAIN FULL STACK
ETHERSJS EXAMPLE

Frontend Backend Database

Blockchain

ReactJS
EthersJS

Metamask
Sass
Axios

Storybook

ExpressJS
Prisma

Open API
EthersJS

PostgreSQL

Hardhat
EthersJS
Solidity

OpenZeppelin
Waffle
Mocha
Chai

Etherscan

BLOCKCHAIN FULL STACK
WEB3JS EXAMPLE

Frontend Backend Database

Blockchain

ReactJS
Web3JS

Metamask
Sass
Axios

Storybook

ExpressJS
Prisma

Open API
Web3JS

PostgreSQL

Truffle
Ganache
Web3JS

OpenZeppelin
Solidity
Mocha
Chai

Etherscan

MINIMAL DAPP

Frontend Blockchain

DECENTRALIZED APPS

Auditability (Open sourced code)
High availability (Distributed)
Transparency (Open transactions)
Neutrality (Decentralized Governance)

BLOCKCHAIN INTERACTION
TECH COMPARISON

Community

Code readability

Package Size

Well tested

Tutorial Materials

ETHERSJS WEB3JSFEATURES

A learning platform for developing, deploying and

administering ETH Smart Contracts.

REMIX IDE

Variables

admin address Admin of the Contract

Functions

constructor (admin: address) Sets the admin

deposit () Deposit ETH to piggy bank.

withdraw (receiver: address, amt:
uint)

Admin withdraw ETH to any address

Events

Deposit (depositor: address, amt: uint) A deposit has occurred

Withdraw (receiver: address, amt: uint) A withdraw has occurred

WHAT ARE SMART CONTRACTS?

“a set of promises, specified in digital form,
including protocols within which parties
perform on the other promises.”
-Nick Szabo (1990s)

Definition has changed since the invention of
Bitcoin (2009). Smart Contracts are not smart
nor are they legally binding.

SMART CONTRACT DEFINITION

Computer Programs: code that can run
Immutable: when code is deployed to blockchain, it
cannot change
Deterministic: given the context of the execution
transaction and blockchain state, the outcome can be
determined
EVM Context: can access all smart contracts’ public
data state, executing transaction’s context and
information about recent blocks
Decentralized World Computer: EVM runs as a local
instance on every node. All nodes combined to form a
single “world computer”

SMART CONTRACT ADDRESS

Each deployed smart contract has an address
calculated via opcodes:
CREATE (old version) or
CREATE2 (Can be pre-calculated): keccak256(0xff,
deployerContractAddress, salt, keccak256(init_code))
[12:]

No private keys associated
Smart Contract Creator receives no special privileges
at protocol level

SMART CONTRACT DELETION

Smart contract code can be deleted via
SELFDESTRUCT opcode (must be manually coded in)
Code is removed from internal state storage from its
address
Deletion does not remove its transaction history
All smart contract’s ETH will be sent to a specified
address
Deletion transaction sender will receive gas refund

ABI

Application Binary Interface, a bridge
between OS and user programs (2 program
modules)
Defines how functions and data structures
are accessed in machine code
Defines how to encode and decode data
from machine code

EVM ABI

Each smart contract has an associated ABI
Encodes smart contract calls and read
transaction call data
A smart contract’s ABI is represented as a
JSON array of function descriptions and
events

SMART CONTRACT DEPLOYMENT

Compile Smart Contract into Bytecode and
Opcodes.

Using an EOA, submit a special “Contract Creation”
transaction with the Bytecode to address 0x0...0.

Wait for it to be validated.

[Optional] Verify the Smart Contract on a block
explorer (most popular is Etherscan)

Special Bytecode called EVM Bytecode

PARSING BYTECODE INTO OPCODES

EVM SMART CONTRACT LANGAUGES

EVM SMART CONTRACT LANGAUGES

Declarative Language: functions express the logic of a
program but not its flow. There are no changes of state
outside of a function. Ex: Haskell, SQL
Imperative Language: functions combine logic and flow
of a program. Ex: Java, C++
Hybrid: combination of above. Ex: Javascript, Python

LLL: Declarative Language, Lisp-like syntax, rarely used
Solidity: Imperative Language, Javascript + Java like
syntax, widely used (Course will use Solidity)
Vyper: Imperative Language, Python like syntax,
moderately used

CODE EXECUTION

EVM

EVM

EVM

UNVERIFIED SMART CONTRACT

Verifying is done by sending the data used in the
Contract Creation Transaction, source code of the
smart contract and smart contract metadata to the
Block Explorer. The Block Explorer will then
compare the bytecode to the deployed smart
contract.

Sept 23, 2023
ethereum.org

UNVERIFIED SMART CONTRACT

Metadata appended to Bytecode

Metadata file Unverified Bytecode

VERIFIED SMART CONTRACT

READ DATA FROM SMART CONTRACT

Reading from a verified Smart Contract on Etherscan

WRITING DATA TO SMART CONTRACT

Writing to a verified Smart Contract on Etherscan

SMART CONTRACT PLANNING

Smart contracts cannot be changed after it has
been deployed!

They should be thoroughly planned out before
coding.

SMART CONTRACT
UPGRADABLE

Actually, there's a work around. We can have a
proxy smart contract the maintains code
versions via another smart contract.

Certain rules apply, and there a limit on what
could be changed.

Property Description

Native Token
Balance

ETH owned by the
smart contract

Data State
Data stored in the

variables via
transactions

Code
Low Level compiled
bytecode that could

be executed

... ...

SMART CONTRACT PROPERTIES

EXAMPLE SMART CONTRACT

EIP

"Ethereum Improvement Proposals (EIPs)
describe standards for the Ethereum platform,
including core protocol specifications, client
APIs, and contract standards."

-https://eips.ethereum.org/

EIP TYPES

Standard Track (500)
Core (189)
Networking (13)
Interface (42)
ERC (256): Ethereum request for comment. These are
application-level standards and conventions, including contract
standards such as token standards (ERC20), and name registries
(ERC137).
Meta (18)
Informational (6)

EIPs are separated into a number of types, and each has its own list
of EIPs:

https://eips.ethereum.org/core
https://eips.ethereum.org/networking
https://eips.ethereum.org/interface
https://eips.ethereum.org/erc
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-137
https://eips.ethereum.org/meta
https://eips.ethereum.org/informational

TOKENS

Fungible: Each commodity has the same value (Ex. Fiat Currency)
Non-Fungible (NFT): Each commodity is unique (Ex. Driver's
License)
Semi-Fungible: Each set of commodity is unique (Ex. Pokemon
Cards consisting of 5 Pikachus and 10 Charzards)

ERC20: Fungible (Ex. Any token on Uniswap, except ETH)
ERC721: NFT (Any token on Foundation NFT)
ERC1155: Semi-Fungible, also known as "NFT" by the general
community (Ex. Some tokens on Opensea)

Many tokens are created using the ERC Smart Contract standards.
Tokens can represent ownership of currencies or digital assets.

3 popular types of tokens:

These tokens have widely accepted ERC standards:

ERC20

ERC721

ERC1155

KNOWING THE ECOSYSTEM

Avoid redundant development work
Security Audits and Testing already done
Lower learning curve for both Users and
Developers due to similar Smart Contract
APIs
Incorporate the larger amount of users and
assets held by established dApps into a new
dApp

In blockchain, using deployed smart contract
code and platform standards is encouraged
because:

1.
2.
3.

4.

KNOWING THE ECOSYSTEM

ERC20
Uniswap provides liquidity and facilitates
trades for ERC20 tokens
Web3 Startups make staking pools to
incentivize people to provide liquidity to
Uniswap for their token
Staking Aggregators auto compound the
staking rewards to earn a high APY
Web3 Insurance offers automatic payout for
Staking Aggregator smart contract hacks

DeFi Example:

SOLIDITY

Strongly Typed
Object Oriented (Inperitive)
Similar to JavaScript and Java
filename.sol
Current Version (Sept 2023): 0.8.21

SOLIDITY VERSION

Semantic Versioning:
MAJOR.MINOR.PATCH
Major: breaking changes
Minor: backwards compatible changes
Patch: backwards compatible bug fixes

Versioning is for choosing “solc” version
The bare min dev setup is a “solc” and a
text editor

external
Function can only be called from other

contracts

internal
Function can only be called from the current

contract

private
Same as internal but additional not visible to

derived contracts

public
Function can be called internally or

externally

view
Additional Type. Function does not write

data and only returns data

pure
Additional Type. Function does not read or

write data, only returns data

payable
Additional Type. Function call may also have

Ether attached

virtual
Additional Type. Function overrides an

inherited function.

FUNCTION VISIBILITY AND
TYPES

MODIFIERS

When a function uses a modifier, the functions
code will be modified, as if the code is moved to
where the _ is

public
Data can be accessed externally and

internally. Also, getters are auto generated

internal
Data can only be accessed within the
contract. NOTE: Data is still visible.

private
Same as internal but not visible in derived

contracts. NOTE: Data is still visible.

string A list of characters

bool true or false

int Positive or negative number. No Decimal

uint Positive number. No Decimal

address Unique identifier for accounts and contracts

enum User defined type

VARIABLE VISIBILITY AND TYPES

arrays Fixed or dynamic sized lists

structs User defined type

mapping
Hashmap with bytes, strings
or enum as keys to any value

uint Positive number. No Decimal

address
Unique identifier for accounts

and contracts

enum User defined type

bytes bytes array

struct user defined data containers

REF TYPES

keccak256, sha256, sha3,
ripemd160

hashing algorithms

ecrecover recover the signing address from a signature

this reference to the executing smart contract

selfdestruct
delete the executing contract and sending

away containing ETH

BUILT-IN FUNCTIONS

seconds 1

minutes 60 seconds

hours 3600 seconds

days 86400 seconds

TIME UNITS

NOTE: TIME IS STAGGERED BY BLOCK
INCLUSION AND IS NOT CONTINUOUS

wei 1

szabo 10**12 wei

finney 10**16 wei

ether 10**18 wei

1eX 1**X

ETHER UNITS

Memory
Temporary store, lifetime

is limited to a function call

Storage Global data store

Calldata
Same as Memory but can
only be used in function
parameter declaration

DATA LOCATION

msg.sender
Address that called the smart contract

function. Can be EOA or Smart Contract
address

msg.value Amount of Ether attached (valued in wei)

msg.data Data payload of the smart contract call

msg.sig
The function selector, which is the 1st 4 bytes

of data payload

msg.gas
Remaining gas supply. DEPRECATED,

replaced with gasleft()

MESSAGE CONTEXT

tx.gasprice
gas price in the calling

transaction

tx.origin
address of original EOA

for the initiating
transaction. UNSAFE

TRANSACTION CONTEXT

block.coinbase
Recipient address of the current block’s

reward fee

block.randao Random number generated by Beacon chain

block.gaslimit Max gas all transactions in a block can spend

block.number Current block number

block.timestamp
Timestamp of when the current block is

added to the blockchain

BLOCK CONTEXT

assert Revert if given statement is false

require
Revert if the given statement is false, with an

optional error message

revert Revert the execution

ERROR HANDLING

EVENTS

Similar to calldata, stored on chain as a
history record, but not as state data
Used to announce data in a pub/sub like
model

Instance Call
Call a reference instance of the smart

contract

call

Low level call function to customize message
gas, error handling and other parameters.

msg.sender is changed to the address of the
calling smart contract

delegatecall
Same as call, but the execution context is

the calling contract

CALLING OTHER CONTRACTS

TIPS ON SAVING GAS

avoid dynamically sized arrays
avoid calls to other contracts
minimize blockchain data updates
estimate gas costs

GAS COSTS

EIP-1559

Refund = max fee - (base fee + tip)

Gas Cost = base fee + tip

EIP-1559
Sept 2023
ethereum.org

BASE FEE CHANGE

Sept 2023
docs.alchemy.org

Tips are awarded to Validators to include transaction
into a block
Base Fee ETH is burned

BASE FEE CHANGE

Tips are less relevant as Base Fees exponentially increases

Sept 2023
hackmd.io/@tvanepps/1559-wallets

GAS LIMIT

Consider this lottery smart contract code:

if(lotteryDrawerCount != 100) {
 lotteryDrawerCount++;
} else {
 calculate winner via complex calculations
}

What will happen when I submit my transaction at
lotteryDrawerCount = 99?

GAS UNITS

More resources Used:
https://coinsbench.com/about-evm-opcode-gas-ethereum-accounts-9f0896f09d04
https://ethereum.org/
https://hardhat.org/
https://docs.ethers.io/v5/
https://www.openzeppelin.com/
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://www.skillsoft.com/

