
Ethereum
and

Smart Contracts

Thierry Sans

The Bitcoin Inspiration

What if you could program money and decentralized logic
into a blockchain?

Ethereum in a Nutshell

• Uses Elliptic Curve Public Keys (secp256k1) and ECDSA signature algorithm
• Consensus :

 (before) Proof of Work
 (since 2022) Proof of Stake

• Block time : ~12 seconds
• ETH are created through staking rewards and transaction fees
• Account-based blockchain + programmable smart contracts

➡ Not just a cryptocurrency
it's a decentralized computing platform to automate trustless transactions
a.k.a decentralized applications (dApp)

Ethereum Accounts & Transactions

Different types of Ethereum accounts (all associated with an address):
• Externally Owned Accounts (EOAs)
• Contract Accounts
• Account abstractions (newest - will be covered in another lecture)

Different types of Ethereum transactions
• transfer ETH from EOA accounts to Ethereum addresses
• deploy smart contracts
• call methods of a deployed smarts

Smart Contracts

What is a smart contract?
A computer program (EVM bytecode) deployed on the blockchain that defines 1) a set of state variables and 2) methods
to read/write these state variables

Can a smart contract hold ETH?
Yes, a smart contract has an address and can hold ETH but there is no private key associated with that address

How to write a smart contract?
Either write an EVM bytecode program directly
or use a high-level language (e.g. Solidity) that compiles programs into EVM bytecode

How to deploy a smart contract?
By sending a transaction that will write the EVM bytecode on the Ethereum blockchain

Can you change the code of a smart contract once deployed?
(short answer) no, the code is immutable
However, the contract state can change (by modifying contract state variables) when smart contract methods are called

How to call a method of a deployed smart contract?
Either directly using EOA account (sending a transaction) or from another contract

EVM code

What can the code do?
• Perform Arithmetic, Logical Operations, Bit Operations plus conditionals and

loops (Turing complete)
• Store data (through contract state variables)
• Read transaction and block data
• Transfer ETH (held by the contract) to other another address
• Receive ETH (and execute some logic when funds are received)
• Call methods from other deployed contracts
• Emits events (logs that will be written on the blockchain)
• Self-destruct

Execution and Gas Fee
Who executes smart-contracts?
The Ethereum nodes that process transactions

When is the smart contract executed?
• When the transaction is received (unconfirmed mempool), the code is executed (by the node)

but the contract's state is not modified (dry-run)
• When the transaction is confirmed (into a block), the code is executed (by the node chosen to

confirmed the next block) and the contract's state is modified (i.e written to the blockchain)
➡ Deterministic execution: given the sequences of transaction and the blockchain state, the

outcome can be determined

If the code has loops, how do we ensure that the execution will terminate?
In a nutshell, calling a smart contract method costs money (a.k.a gas). Whoever calls a smart contract
method must pay some fee that will reward the node (selected to confirm the next block) for
executing the smart contract

What happen when a method call fails or does not terminate because it runs
out of gas?
The transaction is confirmed as a failed transaction. The contract state is not updated (full reverse) but
the gas fee is not returned to the caller but kept by the node.

Gas Fee Calculation

Total Fee = (Base Fee + Priority Fee) × Gas Used

• Base Fee: set by the protocol, dynamically adjusted based on network congestion
• Priority Fee: the tip paid to miners/validators as an incentive to prioritize the transaction
• Gas Used: the amount of gas consumed by the smart contract execution

Each operation (storage, computation, external calls) consumes gas
Examples :

• Writing a new storage variable: 20,000 gas
• Modifying an existing storage variable: 5,000 gas
• Simple arithmetic operation: ~3 gas
• Sending ETH: ~21,000 gas

➡ If the caller supplies more gas than actually needed, the excess of gas is refunded once the transaction
processed

In summary

In summary, what data is written onto the
Ethereum blockchain?
Transactions, smart contract code, smart contract state
variables and events

Why are smart-contracts useful?
Automates agreements without intermediaries by enabling
trustless transactions

Examples of dApps

• Payment Automation
• Tokens (Fungible) including Stablecoins, NFTs (Non-Fungible)

and RWAs (Real-World Assets)
• Funds and Assets Management
• Decentralized Exchanges and Decentralized Marketplaces
• Lending and Borrowing Platforms
• Insurance and Derivatives
• Governance (DAO - Decentralized Autonomous Organization)
• Supply Chain Management

Benefits and Risks of Smart Contracts

Benefits:

• Trustlessness

• Automation

• Transparency

Risks:

• Security vulnerabilities

• Immutable bugs

• Gas cost considerations

Solidity

Introduction to Solidity

High-level, contract-oriented language for Ethereum

Evolved alongside Ethereum to meet dApp needs (through EIP)

Similar in syntax to JavaScript/C++

Solidity Language Constructs

Data types
uint, address, bool, string, byte, enum, struct, array, mapping, ...

Structure
state variables, functions, events, modifiers

Code organization
contracts, inheritance, libraries, interfaces

Development Tools for Solidity

Remix IDE for quick prototyping

Frameworks such as Truffle, Hardhat, Foundry for
development and testing

Example

Requirements for a Simple Auction Contract

An auction dApp:
• Allow an admin to create an auction and control the timing

(start/end bid)
• Allow users to place bids by depositing ETH onto the

auction contract
• Allow users to withdraw their funds if they were outbidded
• Allow the admin to transfer the highest-bid price at the

end of the auction

Code Walkthrough – Contract Setup

The constructor is called when
the contract is deployed

The owner of the contract to restrict certain
action to the owner only

Auction end time

Highest bidder
information

Records outbidded
addresses and amounts

Events (a.k.a logs) that can be
queried by a client

Code Walkthrough – The Bidding Function

Code that can run before (or after) a function

modifier is called here

allows someone to send ETH to the
contract when calling the function (deposit)

Check if the deposit is higher
than current highest bid

Record the previous bidder as
outbidded (to allow refund)

Record the new bidder as the
highest bidder and emit an event

Code Walkthrough – Refunds

Checks if caller's address has been recorded in the
outbidded mapping and that the balance is positive

Set the balance to 0

Initiates the payment and revert if
the payment fails

.... why not simplifying the code

➡ This is huge vulnerability (called reentrency attack) that would
allow the attacker to withdraw all funds from the contract
(more later in the "smart contract security" lecture)

Code Walkthrough
– Withdrawing at the end of the auction

The highest bid amount is
transferred to the owner

Check that the auction has ended and
that owner has not been paid yet

Record that the owner has been paid
and emit an event

Anatomy of a dApp

Examples

Uniswap (DEX)

Beefy Finance
(Yield Farming)

Aave
(Lending and Borowing)

Anatomy of a dApp

Frontend
Server

port
80/443

Wallet (e.g. Metamask)
as a browser extension

Webpage

Ethereum
Blockchain

Ethereum API provider
(e.g. Infura or Alchemy)

Browser
Domain Server

(e.g uniswap.org)

Development Lifecycle

1. Local Development Chain
using hardhat chain running locally

2. Deploy on Testnet chain
either using a real testnet (e.g Sepolia)
or cloud-based testnets (BuildBear for instance)

3. Deploy on Mainnet chain
(either Ethereum, Binance, Base, Polygon and so on)

