Fthereum
and
Smart Contracts

Thierry Sans

Ihe Brtcoin Inspiration

What If you could program money and decentralized logic
into a blockchain?

—thereum 1n a Nutshell

» Uses Elliptic Curve Public Keys (secp256k|) and ECDSA signature algorithm

« (Consensus :
(before) Proof of Work

e 2022 Proot of Stake
B lecidime .~ [2 seconds
* ETH are created through staking rewards and transaction fees

* Account-based blockchain + programmable smart contracts

= Not just a cryptocurrency
it's a decentralized computing platform to automate trustless transactions

a.k.a decentralized applications (dApp)

—thereum Accounts & lransactions

Different types of Ethereum accounts (all associated with an address):
» Externally Owned Accounts (EOAS)
» Contract Accounts

» Account abstractions (newest - will be covered in another lecture)

Different types of Ethereum transactions
« transfer ETH from EOA accounts to Ethereum addresses
* deploy smart contracts

» call methods of a deployed smarts

e Contracts

What is a smart contract?

A computer program (EVM bytecode) deployed on the blockchain that defines |) a set of state variables and 2) methods
to read/write these state variables

Can a smart contract hold ETH?
Yes, a smart contract has an address and can hold ETH but there is no private key associated with that address

How to write a smart contract?
Erther write an EVM bytecode program directly
or use a high-level language (e.g. Solidity) that compiles programs into EVM bytecode

How to deploy a smart contract’
By sending a transaction that will write the EVM bytecode on the Ethereum blockchain

Can you change the code of a smart contract once deployed?
(short answer) no, the code is immutable

However, the contract state can change (by modifying contract state variables) when smart contract methods are called

How to call a method of a deployed smart contract?
Either directly using EOA account (sending a transaction) or from another contract

VM code

What can the code do?

* Perform Arithmetic, Logical Operations, Bit Operations plus conditionals and
loops (Turing complete)

* Store data (through contract state variables)

* Read transaction and block data

* Transfer ETH (held by the contract) to other another address

S eeE e B (and execute some logic when funds are received)
» Call methods from other deployed contracts

* Emits events (logs that will be written on the blockchain)

e Self-destruct

pcatiten and Gas Fee

Who executes smart-contracts?
The Ethereum nodes that process transactions

When is the smart contract executed?
* When the transaction is received (unconfirmed mempool), the code is executed (by the node)
but the contract's state is not modified (dry-run)

* When the transaction is confirmed (into a block), the code is executed (by the node chosen to
confirmed the next block) and the contract’s state is modified (i.e written to the blockchain)

= Deterministic execution: given the sequences of transaction and the blockchain state, the
outcome can be determined

If the code has loops, how do we ensure that the execution will terminate?
In a nutshell, calling a smart contract method costs money (a.k.a gas). Whoever calls a smart contract
method must pay some fee that will reward the node (selected to confirm the next block) for

executing the smart contract

What happen when a method call fails or does not terminate because it runs

out of gas?
The transaction is confirmed as a falled transaction. The contract state is not updated (full reverse) but

the gas fee Is not returned to the caller but kept by the node.

(Gas Fee Calculation

Total Fee = (Base Fee + Priority Fee) x Gas Used

« Base Fee: set by the protocol, dynamically adjusted based on network congestion
* Priority Fee: the tip paid to miners/validators as an incentive to prioritize the transaction

* Gas Used: the amount of gas consumed by the smart contract execution

Each operation (storage, computation, external calls) consumes gas
Examples :

« Writing a new storage variable: 20,000 gas
« Modifying an existing storage variable: 5,000 gas
« Simple arithmetic operation: ~3 gas

« Sending ETH: ~21,000 gas

= |f the caller supplies more gas than actually needed, the excess of gas is refunded once the transaction
processed

In summary

In summary, what data is written onto the
Ethereum blockchain?

Transactions, smart contract code, smart contract state
variables and events

Why are smart-contracts useful?
Automates agreements without intermediaries by enabling
trustless transactions

—xamples of dApps

* Payment Automation

* Jokens (Fungible) including Stablecoins, NFTs (Non-Fungible)
and RWAs (Real-World Assets)

* Funds and Assets Management
* Decentralized Exchanges and Decentralized Marketplaces

* Lending and Borrowing Platforms

* |nsurance and Derivatives
* Governance (DAQO - Decentralized Autonomous Organization)

* Supply Chain Management

Benefits and Risks of Smart Contracts

Benefits: Risks:
* Trustlessness * Security vulnerabllities
» Automation * Immutable bugs

* [ransparency » (Gas cost considerations

Solidity

EVM code generation

|Solidity source \ | Viper source \ | LLL source \

‘ Solidity compiler | ‘ Viper compiler | ‘ LLL compiler |

EVM code J

Ethereum virtual machine code

Introduction to Solidity

High-level, contract-oriented language for Ethereum
Fvolved alongside Ethereum to meet dApp needs (through EIP)

Similar in syntax to JavaScript/C++

Solidity Language Constructs

Data types
uint, address, bool, string, byte, enum, struct, array, mapping, ...

Structure
state variables, functions, events, modifiers

Code organization
contracts, inherrtance, libraries, interfaces

Development Tools for Solidity

Remix IDE for quick prototyping

Frameworks such as Truffle, Hardhat, Foundry for
development and testing

Example

Requirements for a Simple Auction Contract

An auction dApp:

* Allow an admin to create an auction and control the timing
(start/end bid)

 Allow users to place bids by depositing ETH onto the
auction contract

 Allow users to withdraw their funds If they were outbidded

» Allow the admin to transfer the highest-bid price at the
end of the auction

Code Walkthrough — Contract Setup

O o0 O U & WIN BP-

N R R R RPRRRRRRR
SO WO NOULD WNROS

21

pragma solidity ~0.8.0;

The owner of the contract to restrict certain

v contract SimpleAuction { action to the owner only
// State variables

address public owner; Auction end time
uint public auctionEndTime;

address public highestBidder;
uint public highestBid; Highest bidder
bool public ended; information

// Mapping to allow refunds to previous bidders
mapping(address => uint) public pendingReturns; Records outbidded

addresses and amounts
// Events
event BidPlaced(address bidder, uint amount);

event AuctionEnded(address winner, uint amount);

Events (aka logs) that can be

queried by a client

v constructor(uint _biddingTime) { B infinite gas 549000 gas
owner = msg.sender;
auctionEndTime = block.timestamp + _biddingTime;

The constructor is called when

the contract I1s deployed

Code Walkthrough — The Bidding Function

Code that can run before (or after) a function allows someone to send ETH to the

contract when calling the function (deposit)

23 // Modifier to restrict functions

24 ~ modifier onlyBeforeEnd() {

25 require(block.timestamp < auctionEng#¥me, "Auction already ended

26 ; . .

57 y modifier is called here
28

29 // Bid function: allows users to place a bid

30 v function bid() public payable onlyBeforeEnd { B infinite gas

31 require(msg.value > highestBid, "There already is a higher bid."

32

33 // If there's a previous bid, add it to the pending returns N@alEldiRiglsNe<olol M Rall=al=la
34 v if (highestBid != @) { than current highest bid
35 pendingReturns[highestBidder] += highestBid;

36 ¥

> Record the previous bidder as
38 highestBidder = msg.sender; ,

39 highestBid = msg.value; outbidded (to allow refund)

40 emit BidPlaced(msg.sender, msg.value);

41 }

Record the new bidder as the

highest bidder and emit an event

Code Walkthrough — Refunds

Checks if caller's address has been recorded in the

outbidded mapping and that the balance is positive

43 // Withdraw function for outbid participants
44 function withdraw() public returns (bool) { infinite gas
45 uint amount = pendingReturns[msg.sender];
46 require(amount > @, "No funds to withdraw.");
47 Set the balance to O
48 pendingReturns[msg.sender] = 0;

(! . . " -
49 if (pay?ble(msg sender).send(amount) Initiates the payment and revert if
50 pendingReturns[msg.sender] = amount; .

the payment falls

51 return false;
52 ¥
53 return true;

54 }

... why not simplifying the code

42

43 // Withdraw function for outbid participants

44 function withdraw() public returns (bool) { B infinite gas
45 uint amount = pendingReturns[msg.sender];

46 require(amount > 0, "No funds to withdraw.");
47

48 if (payable(msg.sender).send(amount)) {

49 pendingReturns[msg.sender] = 0;

50 return true;

51 ¥

52 return false;

53 ¥

= [his is huge vulnerability (called reentrency attack) that woulad
allow the attacker to withdraw all funds from the contract
& later in the smart contract security” lecture)

Code Walkthrough
— Withdrawing at the end of the auction

50
51
52
53
54
55
56
57
58
59
60
61

Check that the auction has ended and

that owner has not been paid yet

// End the auction and send funds to the owner

function endAuction() public {
require(block.timestamp >= auctionEndTime, "Auction not yet ended.");
require(!ended, "endAuction has already been called.");

ended = true;
emit AuctionEnded(highestBidder, highestBid);

// Transfer funds to the owner

payable(owner).transfer(highestBid); RecordjhatthecmNnerfuﬁ;been[xﬂd
} and emit an event

The highest bid amount Is

transferred to the owner

dA
a
tomy of

Ana

PP

Q' Search tokens) 0x3b72..0624 Aa\/e
(Lending and Borowing)

o
AAaave Dashboard Markets Stake Governance More eee Bridge GHO > Switch tokens & @ ox3b..0624 &

Swap Limit Send Buy o ¢)

© Core Market @ v

Main Ethereum market with the largest selection of assets and yield options
Se” Net worth Net APY ®

$ 0 — VIEW TRANSACTIONS

@ ETH v
L
upply Borrow
263 ETH

Your supplies

Nothing supplied yet
Buy g supp y

Beefy Finance
(Yield Farming)

l | ' <E E><> Beefy (¥) vaults (i) Dashboard @ DAO v @ Resources v 5 Buy Crypto 2t Bridge mooBIFI ¥ $268 o © M 0x3b...0624 M

Portfolio &

Select a token

Platform
DEPOSITED MONTHLY YIELD DAILY YIELD AVG. APY TVL® VAULTS

$0 $0 $0 0% $254.69M 1251

@ ® o ® ¢ e v ® ¢ ®© = @

All Saved My Positions Stablecoins Blue Chip Correlated Single LP CLM Vaults Pools Filters 4 Clear All

Examples

Q, Search... (/) WALLET & DEPOSITED % DAILY % SAFETY &

®
0) cbETH-WETH LP 5.37% 0.0143% $10.13M 11

ALIENBASE $16.12M

¢

BIFI Vault
L § 16.77% 00424%

BEEFY

Anatomy of a dApp

ElfEiElliArE Eroyias

-~

g)
Wallet (e.g. Metamask) ‘ ’
. waw
as a browser extension I

eeeeeeeeeeee

eeeeeeeeeeee

Q

N

4R
BT

¢

2

pT

Fthereum

Blockchain

(e.g. Infura or Alchemy) e
¥
4 N
0vaas [Frontend :
80/443 ron
4\ Server ’ @
N =

Browser €

Domain Server
(e.e uniswap.org)

Development Lifecycle

|. Local Development Chain
using hardhat chain running locally

2. Deploy on Testnet chain
either using a real testnet (e.g Sepolia)
or cloud-based testnets (BuildBear for instance)

3. Deploy on Mainnet chain
(erther Ethereum, Binance, Base, Polygon and so on)

