
Blockchains

Thierry Sans

A centralized ledger (Trusted Third Party)

➡ The bank controls the access to the ledger  
and ensures its correctness

T(Alice, Bob, $20) From To Amount
Alice 100
Bob 50

Alice Bob 20

Pros/cons of using a centralized ledger

✓ Easy to authenticate the users

✓ Easy to ensure that data entries are valid

๏ But what if the bank goes down? (reliability issue)

๏ And what if the bank (or a malicious employee)  
cooks the books? (security issue)

A decentralized ledger (over a P2P network)

➡ All nodes have a copy of the ledger  
and ensure its correctness locally

T(Alice, Bob, $20)

From To Amount
Alice 100
Bob 50

Alice Bob 20

From To Amount
Alice 100
Bob 50

Alice Bob 20

From To Amount
Alice 100
Bob 50

Alice Bob 20

Pros/cons of using a decentralized ledger

✓ Some nodes can go down but not the network entirely 
(better reliability)

✓ Some nodes can be malicious, but the rest of the network
will have the legitimate copy of the ledger (better security)

๏ Harder to authenticate users

๏ Hard to ensure that all nodes have the same ledger
(consistency)

Solving Authentication

Using public-key cryptography and digital signature

➡ The public key is the identity

➡ The signature is the authentication mechanism

pkA, sign[skA, T(Alice, Bob, $20)]

From To Amount
pkA 100
pkB 50

pkA pkB 20

(pkA, skA)

From To Amount
pkA 100
pkB 50

pkA pkB 20

From To Amount
pkA 100
pkB 50

pkA pkB 20

Solving Consistency

What a P2P network looks like

Data Propagation in P2P network

Flooding routing algorithm 
When receiving a transaction, forward it to all connected peers

➡ A transaction might take time to be broadcasted on the
network

๏ An attacker can use that to do a double spending attack by
broadcasting two conflicting transactions to distant nodes in
the network

Double spending attack example

From To Amount

pkM 100

?? ?? ??

From To Amount

pkM 100

pkM pkB 100

T(Mallory, Bob, $100)

From To Amount

pkM 100

pkM pkA 100

T(Mallory, Alice, $100)

The Blockchain Solution

The idea is to have the all nodes in the network "agreeing" from time to time about a
snapshot of the valid transactions so far

• All transactions are verified and accepted into a mempool of unconfirmed
transactions

• Every t seconds, "the network selects one node" to create a block of confirmed
transactions

• The block is chained to the previous one
• That block is broadcasted to the network and each node check whether this

block is valid

✓ The time interval between two blocks should be long enough so that "most" of the
network has had time to receive the block

Example

A block is valid if
• The old hash corresponds to the previous block hash
• The block hash is H(oldH + T0 + T1 + ... + Tn)
• All transactions are valid (no double spending)

newH: uUiN1

oldH: null

Genesis Block

newH: dSm3LJ

oldH: uUiN1

newH: 7fLvX

oldH: dSm3LJ

T01,T02,...,T0N T11,T12,...,T1N T21,T22,...,T2N

One big problem to solve ...

How does the network "agree" on which node should create
and broadcast the block?

➡ Consensus (coming soon)

• Proof of Work (Bitcoin)
• Proof of Stake (Ethereum)

Two Types of Blockchains

Account-based blockchains

(pkA, skA)

Tx From To Amount

1 pkA 100

2 pkB 20

3 pkA pkB 60

4 pkB pkA 70

(pkB, skB)

Coin-based blockchains  
(a.k.a UTXO Unspent Transaction Output)

(pk1, sk1) 
(pk4, sk4) 
(pk5, sk5) 

Tx Inputs Outputs

1 pk1(100)

2 pk2(20)

3 pk1(100) pk3(60) pk4(40)

4 pk2(20) pk3(60) pk5(70) pk6(10)

(pk2, sk2) 
(pk3, sk3) 
(pk6, sk6) 

pros and cons

UTXO-based (e.g Bitcoin)
✓ Some relative privacy (no links between keys)
๏ Hard to manage all of these keys
➡ Intermediate solution: HD wallets (coming later)

Account-based (e.g Ethereum)
✓ Easy way to manage keys
๏ Hard to have privacy (transactions are all linked)
➡ Candidate solution: ZK-proofs (coming later)

