Blockchalns

Thierry Sans

A centralized ledger (Trusted Third Party)

T(Alice, Bob, $20)
> Alice 100
Bob 510,

Alice Bob 20

Sl banic controls the access to the ledger
and ensures Its correctness

Pros/cons of using a centralized ledger

v Easy to authenticate the users
v Easy to ensure that data entries are valid
@ But what If the bank goes down!? (reliability issue)

@ And what If the bank (or a malicious employee)
cooks the books! (securrty Issue)

A decentralized ledger (over a P2P network)

Alice |00 Alice |00
Bob 50 Bob 50

Alice Bob 20 Alice Bob 20

RN e B olb T 520

\
B Modes have a copy of the ledger lce__ 100

and ensure 1ts correctness locally Aice | Bob | 20

Pros/cons of using a decentralized ledger

v Some nodes can go down but not the network entirely
(better reliability)

v Some nodes can be malicious, but the rest of the network
will have the legitimate copy of the ledger (better security)

® Harder to authenticate users

@ Hard to ensure that all nodes have the same ledger
(consistency)

Solving Authentication

Using public-key cryptography and digital signature

From To Amount rom l n
pka 100 PKa
pkg 50
pka 50
pka pks 20

pka pka 20

(pkA . sk A)

ElRessign isky T (Alice, Bob, $20)]
=

= [he public key Is the identity
pka 100

= [he signature Is the authentication mechanism v E:f ig
A B

Solving Consistency

What a P2P network looks like

Data Propagation in P2P network

Flooding routing algorithm
VWhen recelving a transaction, forward it to all connected peers

= A transaction might take time to be broadcasted on the
network

® An attacker can use that to do a double spending attack by
broadcasting two conflicting transactions to distant nodes In
the network

IRGLIEN S fory, Al

pkm

pka

ot LO0T)
J 5.

From To Amount b
pkMm 100

From To Amount
pkMm 100
N 1% I

Double spending attack example

T (Malvl ey S Ewlon
Ea G e @

N
’ N
.
) \
| 1
1
'
3 '
.
\
’
\
N ,
N o

SHLIOC)

From To Amount
pkMm 100

pkMm pkg 100

The Blockchain Solution

The idea Is to have the all nodes in the network "agreeing” from time to time about a
snapshot of the valid transactions so far

* All transactions are verified and accepted into a mempool of unconfirmed
transactions

* Every t seconds, "the network selects one node" to create a block of confirmed
transactions

* The block is chained to the previous one

* That block Is broadcasted to the network and each node check whether this
block Is valid

v The time interval between two blocks should be long enough so that "most” of the
network has had time to receive the block

-Xample

@iiclEt s n L

|

To1,To2y ¢+« ,Ton

olic Hes g Ao

i, I el e s I b

I

oldH: dSm3LJ

newH: uUiN1

Genesis Block

A block is valid It

 [he old hash corresponds to the previous block hash

newH: dSm3LJ

T21,T22, o o o,TZN

newH: 7fLvX

* Jhe blockhashisH(oldH + T + T1 + ... + Ty)

» All transactions are valid (no double spending)

One big problem to solve ..

How does the network "agree” on which node should create
and broadcast the block?

= (Consensus (coming soon)

* Proof of Work (Brtcoin)
Eiieer ol Stake (Ethereum)

Iwo Types of Blockchains

Account-based blockchalns

(pks, skg)

(pka, ska) | Dka 100
Ik Dkg 20

\ 3 pka pkg 60 n
4 Dk Dka /0

Colin-based blockchains
(a.k.a UTXO Unspent Transaction Output)

(k. sk - Pk, sko)
(pks, sk3)

(pka, sks)
(pks, sks) pki (100) (pks, ske)

2 pka(20)
\ 3 ok (100) pk3(60) pka(40) A

4 pka(20) pks(60) | pks(70) pke(10)

Dros and cons

UTXO-based (e.g Bitcoin)

v Some relative privacy (no links between keys)

®

-

—lard to manage all of these keys

ntermediate solution: HD wallets (coming later)

Account-based (e.g Ethereum)

4

®

—asy way to manage keys

—lard to have privacy (transactions are all linked)

= (andidate solution: ZK-proofs (coming later)

