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A centralized ledger (Trusted Third Party)

T(Alice, Bob, $20)
> Alice 100
Bob 510,

Alice Bob 20

Sl banic controls the access to the ledger
and ensures Its correctness



Pros/cons of using a centralized ledger

v Easy to authenticate the users
v Easy to ensure that data entries are valid
@ But what If the bank goes down!? (reliability issue)

@ And what If the bank (or a malicious employee)
cooks the books! (securrty Issue)



A decentralized ledger (over a P2P network)
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Pros/cons of using a decentralized ledger

v Some nodes can go down but not the network entirely
(better reliability)

v Some nodes can be malicious, but the rest of the network
will have the legitimate copy of the ledger (better security)

® Harder to authenticate users

@ Hard to ensure that all nodes have the same ledger
(consistency)



Solving Authentication



Using public-key cryptography and digital signature
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Solving Consistency



What a P2P network looks like




Data Propagation in P2P network

Flooding routing algorithm
VWhen recelving a transaction, forward it to all connected peers

= A transaction might take time to be broadcasted on the
network

® An attacker can use that to do a double spending attack by
broadcasting two conflicting transactions to distant nodes In
the network



IRGLIEN S fory, Al

pkm

pka

ot LO0T)
J 5.

From To Amount b
pkMm 100

From To Amount
pkMm 100
N 1% I

Double spending attack example

T (Malvl ey S Ewlon
Ea G e @

N
’ N
.
) \
| 1
1
'
3 '
.
\
’
\
N ,
N o

SHLIOC)

From To Amount
pkMm 100

pkMm pkg 100




The Blockchain Solution

The idea Is to have the all nodes in the network "agreeing” from time to time about a
snapshot of the valid transactions so far

* All transactions are verified and accepted into a mempool of unconfirmed
transactions

* Every t seconds, "the network selects one node" to create a block of confirmed
transactions

* The block is chained to the previous one

* That block Is broadcasted to the network and each node check whether this
block Is valid

v The time interval between two blocks should be long enough so that "most” of the
network has had time to receive the block
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» All transactions are valid (no double spending)




One big problem to solve ..

How does the network "agree” on which node should create
and broadcast the block?

= (Consensus (coming soon)

* Proof of Work (Brtcoin)
Eiieer ol Stake (Ethereum)



Iwo Types of Blockchains



Account-based blockchalns
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Colin-based blockchains
(a.k.a UTXO Unspent Transaction Output)
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Dros and cons

UTXO-based (e.g Bitcoin)

v Some relative privacy (no links between keys)

®

-

—lard to manage all of these keys

ntermediate solution: HD wallets (coming later)

Account-based (e.g Ethereum)
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®

—asy way to manage keys

—lard to have privacy (transactions are all linked)

= (andidate solution: ZK-proofs (coming later)



