
Blockchains and
Decentralized Applications

Thierry Sans

Cryptocurrencies

Total cryptocurrency market cap

The original
Bitcoin paper

(2008)

A centralized ledger (Trusted Third Party)

T(Alice, Bob, $100)

$100$100

A decentralized ledger (Trustless)

T(Alice, Bob, $100)

T(Alice, Bob, $100)
T(Alice, Bob, $100)

$100 $100

Beyond Cryptocurrencies

Towards Decentralized Applications

Web 2 - The centralized Web

Web 3 - The decentralized web

smart contracts

Cryptography Toolbox

The cryptography toolbox has many building blocks . . .

. . . but here we only need:
• Hashing
• Digital Signature

Cryptographic Hashing

H(m) = x is a hash function if
• m is a message of any length
• x is a message digest of a fixed length
• H is a non invertible function
➡ H is a lossy compression function

necessarily there exists x, m1 and m2 | H(m1) = H(m2) = x

H
m1

m2

m3

x1

x2

Computational Properties

✓ Given H and m, computing x is easy (polynomial or linear)

๏ Given H and x, computing m is hard (exponential)

๏ Given H, m and x, it is hard (exponential) to find m’
such that H(m) = H(m’) = x

๏ Given H, it is hard (exponential) to find m and m’
such that H(m) = H(m’) = x

Hm x

Digital Signatures

Only Alice can sign a message m with her secret key skA
➡ Everybody can verify m using Alice's public key pkA

(pkA, skA) = generateKeyPair() pkA

m, sig, pkA

verify(m, sig, pkA)

sig = sign(m, skA)

pkA

Computational Properties

✓ (pk, sk) = generateKeyPair()
is easy to compute (polynomial)

✓ sig = sign(m, skA)
is easy to compute (either polynomial or linear)

✓ verify(m, sig, pkA)
is easy to compute (either polynomial or linear)

๏ Finding a matching key sk, given pk is hard (exponential)

๏ Forging a valid signature without knowing sk is hard (exponential)

