
Web Security

Thierry Sans

1991
Sir Tim Berners-Lee

2014

Collaboration

Customer Resources Management

Accounting and Billing

Content Management

E-Learning

E-Health

Publishing

Web Portals

Social Networks

The Big Picture

The web architecture

Server SideClient Side

Web Server DatabaseWeb Browser

Securing the web architecture means securing ...

• The network

• The DNS (Domain Name System)

• The web server operating system

• The web server application (Apache for instance)

• The database application (Oracle for instance)

• The web application Our focus here!

What is a web application?

+ program running
on the server

program running
on the browser

Anatomy of a web application

The HTTP protocol

Network protocol for requesting/receiving data on the Web

• Standard TCP protocol on port 80 (by default)

• URI/URL specifies what resource is being accessed

• Different request methods

Let’s look at what a web server does

 > telnet whitehat.local 80
 GET /

telnet to a web server

enter HTTP requests

Anatomy of a URL

http://whitehat.local/index.php?filter=hello

protocol server query string

path
resource

get parameters

Authentication and Authorization

✓ Authentication

• Who are the authorized users?

✓ Authorization

• Who can access what and how?

The simple recipe for user authentication

1. Ask the user for a login and password and send
it to the server (HTTP/POST request)

2. Verify the login/password based on information
stored on the server (usually in the database)

3. Start a session once the user has been authenticated

4. Grant access to resources according to the session

The concept of session

There is a session id (aka token)
between the browser and the web application

This session id should be unique and unforgeable
(usually a long random number or a hash)
➡ Stored in the cookie

The session id is bind to key/value pairs data
➡ Stored on the server

The big picture

Web ServerWeb Browser

HTTP request

HTTP response
HTTP request

HTTP response

Cookie : key/value pairs
stored in the requests

The user can create, modify, delete the session ID in the cookie

Session : key/value pairs
stored on the server

But cannot access the key/value pairs stored on the server

Insufficient Transport Layer Protection

a.k.a the need for HTTPs

How to steal user’s credentials

➡ Brute force the user’s password or session ID

➡ Steal the user’s password or session ID

Do you trust the network?

๏ Threat 1 : an attacker can eavesdrop messages sent back and forth

interesting!

Do you really trust the network?

๏ Threat 2 : an attacker can tamper with messages sent back and
forth

I am example.com!

example.com

Confidentiality and Integrity

๏ Threat 1 : an attacker can eavesdrop messages sent back and
forth
Confidentiality: how do exchange information secretly?

๏ Threat 2 : an attacker can tamper messages sent back and forth
Integrity: How do we exchange information reliably?

Why and when using HTTPS?

HTTPS = HTTP + TLS

➡ TLS provides
• confidentiality: end-to-end secure channel
• integrity: authentication handshake

➡ HTTPS protects any data send back and forth including:
• login and password
• session ID

✓ HTTPS everywhere
HTTPS must be used during the entire session

Be careful of mixed content

Mixed-content happens when:

1. an HTTPS page contains elements (ajax, js, image, video, css ...)
served with HTTP

2. an HTTPS page transfers control to another HTTP page within
the same domain

๏ authentication cookie will be sent over HTTP
๏ Modern browsers block (or warn of) mixed-content

Secure cookie flag

✓ The cookie will be sent over HTTPS exclusively

➡ Prevents authentication cookie from leaking in case of mixed-
content

Do/Don't with HTTPS

• Always use HTTPS exclusively (in production)

• Always have a valid and signed certificate (no self-signed cert)

• Always avoid using absolute URL (mixed-content)

• Always use secure cookie flag with authentication cookie

Limitation of HTTPS

password = 123456 password = 123456

E#%FY7*5EZ$#G

Stealing passwords from the client

• Social engineering - Phishing

• Keyloggers (keystroke logging)

• Data mining (emails, logs)

• Hack the client’s code

Stealing passwords from the server

• Hack the server

• Hack the server’s side code

Beyond HTTPS - attacking the web application

• Content Spoofing

• Cross-Site Scripting

• Cross-site Request
Forgery

• Incomplete Mediation

• Broken Access Control

• SQL Injection

Frontend Vulnerabilities Backend Vulnerabilities

Backend Vulnerability

Broken Access Control

Information Leakage

“AT&T Inc. apologized to Apple Inc. iPad 3G tablet computer
users whose e-mail addresses were exposed during a security
breach disclosed last week.”

source Business Week - June 14 2010

“There’s no hack, no infiltration, and no breach, just a really
poorly designed web application that returns e-mail address
when ICCID is passed to it.”

source Praetorian Prefect - June 9 2010

Backend Vulnerability

Incomplete Mediation

Incomplete Mediation - The Shopping Cart Attack

order=(#2956,10,9,90)

Server Trusted
Domain

Client Trusted Domain

* Notice that Amazon is not vulnerable to this attack

*

Thank you for your order!

The total is calculated by
a script on the client

The order is generated
based on the request

1 10

The backend is the only trusted domain

๏ Data coming from the frontend cannot be trusted

✓ Sensitive operations must be done on the backend

Backend Vulnerability

SQL Injection

Problem

➡ An attacker can inject SQL/NoSQL code

๏ Retrieve, add, modify, delete information

๏ Bypass authentication

Checking password

name=Alice&pwd=pass4alice

/signin/
signin.html

Access Granted!

Bypassing password check

db.run("SELECT * FROM users  
WHERE USERNAME = '" + username + "'  
 AND PASSWORD = '" + password + "'"

username: alice  
password: pass4alice

blah' OR '1'='1

NoSQL Injection

db.find({ username: username,  
 password: password });

username: alice  
password: pass4alice

{gt: ""}

Frontend Vulnerability

Content Spoofing

comment = “Fun stuff ...

* Notice that Youtube is not vulnerable to this attack

GET /?videoid=527

<html ...

GET /?videoid=527

<html ...

Content Spoofing

The page contains the attacker’s ad.

Problem

➡ An attacker can inject HTML tags in the page

๏ Add illegitimate content to the webpage
(ads most of the time)

Generic Solution

✓ Data inserted in the DOM must be validated

Frontend Vulnerability

Cross-Site Scripting (XSS)

Cross-Site Scripting Attack (XSS attack)

name=CMU

“Hello CMU!”

“Hello <script language="javascript">alert(“XSS attack”);</script>!”

name=<script language="javascript">alert(“XSS attack”);</script>

XSS Attack = Javascript Code Injection

Problem

➡ An attacker can inject arbitrary javascript code
in the page that will be executed by the browser

๏ Inject illegitimate content in the page
(same as content spoofing)

๏ Perform illegitimate HTTP requests through Ajax
(same as a CSRF attack)

๏ Steal Session ID from the cookie
๏ Steal user’s login/password by modifying the page to

forge a perfect scam

comment = “<script> ...

* Notice that Youtube is not vulnerable to this attack

login=Alice&password=123456

GET /?videoid=527

<html ...

GET /?videoid=527

<html ...

The script contained in the comments
modifies the page to look like the login page!

Forging a perfect scam

It gets worst - XSS Worms

Spread on social networks

• Samy targeting MySpace (2005)

• JTV.worm targeting Justin.tv (2008)

• Twitter worm targeting Twitter (2010)

Variations on XSS attacks

• Reflected XSS
Malicious data sent to the backend are immediately sent back to
the frontend to be inserted into the DOM

• Stored XSS
Malicious data sent to the backend are store in the database and
later-on sent back to the frontend to be inserted into the DOM

• DOM-based attack
Malicious data are manipulated in the frontend (javascript) and
inserted into the DOM

Solution

✓ Data inserted in the DOM must be validated

HttpOnly cookie flag

✓ The cookie is not readable/writable from the frontend

➡ Prevents the authentication cookie from being leaked when
an XSS attack (cross-site scripting) occurs

Cross-Site Request Forgery

Ajax requests across domains http://B.com

http://A.com

The browser does not allow js code
from domain A to access resources
from B
➡ Only HTTP response is blocked

Same origin policy

➡ Resources must come from the same domain
(protocol, host, port)

Elements under control of the same-origin policy
• Ajax requests
• Form actions

Elements not under control of the same-origin policy
• Javascript scripts
• CSS
• Images, video, sound
• Plugins

Examples

client server

same protocol,
port and host

http://example.com http://example.com

http://user:pass@example.com http://example.com

top-level domain http://example.com http://example.org

host http://example.com http://other.com

sub-host http://www.example.com http://example.com

sub-host http://example.com http://www.example.com

port http://example.com:3000 http://example.com

protocol http://example.com https://example.com

[digression] relaxing the same-origin policy

• Switch to the superdomain with javascript
www.example.com can be relaxed to example.com

• iframe

• JSONP

• Cross-Origin Resource Sharing (CORS)

Problem

➡ An attacker can executes unwanted but yet authenticated
actions on a web application by setting up a malicious
website with cross-origin requests

Generic solution - CSRF tokens

✓ Protect legitimate requests with a CSRF token

GET /getFormView

response

POST request

CSRF Token

POST request

SameSite cookie flag

✓ The cookie will be not be sent over cross-site requests

➡ Prevents forwarding the authentication cookie over cross-
origin requests (cross-site request forgery)

Conclusion

Server SideClient Side

Web Server DatabaseWeb Browser

You have absolutely no control
on the client

References

• OWASP Top 10
https://owasp.org/www-project-top-ten/

• Mozilla Secure Coding Guideline
https://wiki.mozilla.org/WebAppSec/
Secure_Coding_Guidelines

https://owasp.org/www-project-top-ten/
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

https://owasp.org/Top10/

➡ Risks are ranked according to the frequency of discovered
security defects, the severity of the uncovered vulnerabilities,
and the magnitude of their potential impacts

https://owasp.org/Top10/

