
Protection

Thierry Sans

`

Why code written in assembly code or C are subject
to buffer overflow attacks?
➡ Because C has primitives to manipulate the memory directly

(pointers ect ...)

Choosing a better programming language

Some languages are type-safe (i.e memory safe)
➡ Pure Rust, Lisp, pure Java, ADA, ML …

Some languages isolate potentially unsafe code
➡ Modula-3, Java with native methods, C# …

Some languages are hopeless
➡ Assembly languages, C …

➡ Cannot access arbitrary memory addresses

➡ Cannot corrupt their own memory

✓ Do not crash

Type-Safe Programs

So why are we still using unsafe
programming languages?

If other programming languages are “memory
safe”, why are we not using them instead?

➡ Because C and assembly code are used when a program
requires high performances (audio, vide, calculus …)
or when dealing with hardware directly (OS, drivers ….)

How to write better programs with unsafe
programming languages?

• Defensive Programming

• Penetration testing

• Formal testing

• Formal development

How to run programs written with unsafe
programming languages?

• Fortify Source Functions

• Stack Canaries

• DEP/NX - Non Executable Stack

• ASLR - Address Space Layout Randomization

• PIC/PIE - Position Independent Executables

How to run programs written with
unsafe programming languages?

 Fortify Source Functions

➡ GCC macro FORTIFY_SOURCE provides buffer overflow
checks for unsafe C libraries

memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf,
vsprintf, snprintf, vsnprintf, gets

Checks are performed
• some at compile time (compiler warnings)
• other at run time (code dynamically added to binary)

Canaries
• The compiler modifies every function's prologue and epilogue regions to place

and check a value (a.k.a a canary) on the stack

• When a buffer overflows, the canary is overwritten. The programs detects it
before the function returns and an exception is raised

• Different types:
• random canaries
• xor canaries

• Disabling Canary protection on Linux
$ gcc ... -fno-stack-protector

• Bypassing canary protection : Structured Exception Handling (SEH) exploit
overwrite the existing exception handler structure in the stack to point to your
own code

DEP/NX - Non Executable Stack

• The program marks important structures in memory as non-executable

• The program generates an hardware-level exception if you try to
execute those memory regions

• This makes normal stack buffer overflows where you set eip to
esp+offset and immediately run your shellcode impossible

• Disabling NX protection on Linux
$ gcc ...-z execstack

• Bypassing NX protection : Return-to-lib-c exploit
return to a subroutine of the lib C that is already present in the process’
executable memory

ASLR - Address Space Layout Randomization

• The OS randomize the location (random offset) where the standard
libraries and other elements are stored in memory

• Harder for the attacker to guess the address of a lib-c subroutine

• Disabling ASLR protection on Linux
$ sysctl kernel.randomize_va_space=0

• Bypassing ASLR protection : Brute-force attack to guess the ASLR offset

• Bypassing ASLR protection : Return-Oriented-Programming (ROP) exploit
use instruction pieces of the existing program (called "gadgets") and
chain them together to weave the exploit

PIC/PIE - Position Independent Code/Executables

• Without PIC/PIE
code is compiled with absolute addresses and must be
loaded at a specific location to function correctly

• With PIC/PIE
code is compiled with relative addressing that are resolved
dynamically when executed by calling a function to obtain
the return value on stack

Confined execution environment - Sandbox

A sandbox is tightly-controlled set of resources for untrusted
programs to run in

➡ Sandboxing servers - virtual machines

➡ Sandboxing programs
• Chroot and AppArmor in Linux
• Sandbox in MacOS Lion
• Metro App Sandboxing in Windows 8

➡ Sandboxing applets - Java and Flash in web browsers

Intrusion Detection/Prevention Systems

• Host-based Intrusion Detection Systems (IDS)

• Host-based Intrusion Prevention systems (IPS)

✓ Based on signatures (well known programs)

✓ Based on behaviors (unknown programs)

➡ Example : Syslog and Systrace on Linux

๏ Vulnerable to malicious programs residing in the
kernel called “rootkits”

How to write better programs with
unsafe programming languages?

Defensive programming (1)
Adopting good programming practices
Modularity
➡ Have separate modules for separate functionalities
✓ Easier to find security flaws when components are independent

Encapsulation
➡ Limit the interaction between the components
✓ Avoid wrong usage of the components

Information hiding
➡ Hide the implementation
๏ Black box model does not improve security

Defensive programming (2)
Being security aware programmer

✓ Check the inputs, even between components that belongs to
the same application (mutual suspicion)

✓ Be “fault tolerant” by having a consistent policy to handle failure
(managing exceptions)

✓ Reuse known and widely used code by using design patterns
and existing libraries

Penetration Testing

Testing the functionalities

✓ Unit test, Integration test, Performance test and so on …

Testing the security

✓ Penetration tests

➡ Try to make the software fail by pushing the limits of a “normal”
usage i.e test what the program is not supposed to do

Using formal methods to verify a program

Static analysis - analyzing the code to detect security flaws

• Control flow - analyzing the sequence of instructions

• Data flow - analyzing how the date are accessed

• Data structure - analyzing how data are organized

➡ Abstract interpretation [Cousot]
✓ Verification of critical embedded software in Airbus aircrafts

Using formal methods to generate a program

Mathematical description of the problem

Proof of correctness

Executable code
or hardware design

Refinement
steps

Examples

Hardware design (VHDL, Verilog)
✓ Used by semi-conductor companies such as Intel

Critical embedded software (B/Z, Lustre/Esterel)
✓ Urban Transportation

(METEOR Metro Line 14 in Paris by Alstom)
✓ Rail transportation (Eurostar)
✓ Aeronautic (Airbus, Eurocopter, Dassault)
✓ Nuclear plants (Schneider Electric)

Pros and cons of using formal methods

✓ Nothing better than a mathematical proof
➡ A code “proven safe” is safe

๏ Development is time and effort (and so money) consuming
➡ Should be motivated by the risk analysis

๏ Do not prevent from specification bugs
➡ Example of network protocols

