Protection

Thierry Sans

Why code written in assembly code or C are subject
to buffer overflow attacks?

= Because C has primitives to manipulate the memory directly
(pointers ect ...)

Choosing a better programming language

Some languages are type-safe (i.e memory safe)
SRR, Lisp, pure Java, ADA, ML ...

Some languages isolate potentially unsafe code

= Modula-3, Java with native methods, C# ...

Some languages are hopeless
= Assembly languages, C ...

Type-5Safe Programs

= (annot access arbrtrary memory addresses
= (Cannot corrupt their own memory

v Do not crash

SO why are we still using unsafe
programming languages?

If other programming languages are ‘“memory
safe”, why are we not using them instead?

= Because C and assembly code are used when a program
requires high performances (audio, vide, calculus ...)
or when dealing with hardware directly (OS5, drivers)

ow to write better programs with unsafe
rogramming languages!

Defensive Programming
Penetration testing
Formal testing

Formal development

ow to run programs written with unsafe
rogramming languages!

Fortity Source Functions

Stack Canaries

DEP/NX - Non Executable Stack

ASLR - Address Space Layout Randomization

PIC/PIE - Position Independent Executables

How to run programs written with
unsafe programming languages?

Fortify Source Functions

e arnacro FORTIFY_SOURCE provides burier oveERile
checks for unsafe C libraries

memcpy, mempcpy, memmove, memset, strcpy,

SWdelem7 sSCrncpy, strcat, strncat, cSEiasEissae

P salpse S snpr I ntf, vsnprintl, ‘geEs
Checks are performed

* some at complle time (compiler warnings)

» other at run time (code dynamically added to binary)

@ aAries

« The compiler modifies every function's prologue and epilogue regions to place
and check a value (a.ka a canary) on the stack

- When a buffer overflows, the canary Is overwritten. The programs detects it
before the function returns and an exception Is raised

SR lErEtt/pes:
 random canaries
e XOr canaries

» Disabling Canary protection on Linux
Ellsslen - fno—stack-protector

» Bypassing canary protection : Structured Exception Handling (SEH) explort
overwrite the existing exception handler structure in the stack to point to your
own code

P/NX - Non Executable Stack

The program marks important structures in memory as non-executable

The program generates an hardware-level exception If you try to
execute those memory regions

his makes normal stack buffer overflows where you set eip to
esptoffset and immediately run your shellcode impossible

Disabling NX protection on Linux
Ellelee ... z execstack

Bypassing NX protection : Return-to-lib-c exploit
return to a subroutine of the lib C that Is already present in the process
executable memory

ASLR - Address Space Layout Randomization

* The OS randomize the location (random offset) where the standard
ibraries and other elements are stored in memory

» Harder for the attacker to guess the address of a lib-c subroutine

» Disabling ASLR protection on Linux
(s e sl kerniel . randomize va space=0

* Bypassing ASLR protection : Brute-force attack to guess the ASLR offset

* Bypassing ASLR protection : Return-Oriented-Programming (ROP) explort
use Instruction pieces of the existing program (called "gadgets") and
chain them together to weave the exploit

PIC/PIE - Position Independent Code/Executables

- Without PIC/PIE
code Is complled with absolute addresses and must be
loaded at a specific location to function correctly

- With PIC/PIE

code Is complled with relative addressing that are resolved
dynamically when executed by calling a function to obtain
the return value on stack

Confined execution environment - Sandbox

A sandbox is tightly-controlled set of resources for untrusted
programs to run in

= Sandboxing servers - virtual machines

= Sandboxing programs
Chroot and AppArmor in Linux

Sandbox In MacOS Lion
Metro App Sandboxing in Windows 3

= Sandboxing applets - Java and Flash in web browsers

Intrusion Detection/Prevention Systems

» Host-based Intrusion Detection Systems (IDS)

» Host-based Intrusion Prevention systems (IPS)

v Based on sighatures (well known programs)
v Based on behaviors (unknown programs)
= [Example : Syslog and Systrace on Linux

@ Vulnerable to malicious programs residing in the
kernel called “rootkits™

How to write better programs with
unsafe programming languages?

Defensive programming (|)
Adopting sood programming practices

Modularity

= Have separate modules for separate functionalities

v Easier to find security flaws when components are independent

Encapsulation
= |imit the interaction between the components

v Avoid wrong usage of the components

Information hiding

= Hide the implementation

@ Black box model does not improve security

Defensive programming (2)
Being security aware programmer

v Check the inputs, even between components that belongs to
the same application (mutual suspicion)

v Be "fault tolerant” by having a consistent policy to handle failure
(Managing exceptions)

v Reuse known and widely used code by using design patterns
and existing libraries

Penetration lesting

Testing the functionalities

v Unit test, Integration test, Performance test and so on ...

Testing the security
v Penetration tests

= [ry to make the software fall by pushing the limrits of a “normal”
usage I.e test what the program Is not supposed to do

Using formal methods to verify a program

Static analysis - analyzing the code to detect security flaws
» Control flow - analyzing the sequence of instructions

» Data flow - analyzing how the date are accessed

» Data structure - analyzing how data are organized

= Abstract interpretation [Cousot

v Verification of critical embedded software in Airbus aircrafts

Using formal methods to generate a program

Mathematical description of the problem

Refinement
steps

Proof of correctness

\ %

-xecutable code
or hardware design

Examples

Hardware desigh (VHDL, Verilog)

v Used by semi-conductor companies such as Intel

Critical embedded software (B/Z, Lustre/Esterel)

v Urban Transportation
(METEOR Metro Line 14 in Paris by Alstom)

v Rall transportation (Eurostar)
v Aeronautic (Airbus, Eurocopter; Dassault)

v Nuclear plants (Schneider Electric)

Pros and cons of using formal methods

v Nothing better than a mathematical proof

= A code “proven safe’ Is safe

® Development is time and effort (and so money) consuming

= Should be motivated by the risk analysis

@ Do not prevent from specification bugs

= [Example of network protocols

