
Operating Systems and
Program (in)security

Thierry Sans

An Amateurish Introduction To
Operating System

user-space

Kernel

applications

services
(daemon)

system calls

Daemon

Daemons also called “services” are programs
 that run in the background

• System services
• Network services (servers)
• Monitoring
• Scheduled tasks

www

Alice Bob

admin
(root)

policy

Hypothesis

➡ Programs are run by an authenticated user (authentication)

➡ Resources are accessed through programs (authorization)

➡ Every access is checked by the system (complete mediation)

✓ Everything is “secured” as long as long as the system is well
configured and the programs behave as expected

๏ But ...

Threats

What can go wrong?

How can the security be compromised?

๏ A program can crash

๏ A program can have an undesirable behavior

Vulnerabilities

Malicious Program vs. Vulnerable Program

The program has been designed to compromise the security
of the operating system
➡ The user executes a malware

The program has not been designed to compromise the
security of the operating system
➡ The user executes a legitimate program that executes the

malware

๏ Code Execution Vulnerability : a vulnerability that
can be exploited to execute a malicious program

Malicious programs executed by the user

Alice

Bob

admin
(root)

Malicious programs executed
by other legitimate programs

Alice

Bob

Bob

www admin
(root)

What happen when a bug occurs?

• Nothing, the program and/or the OS are “fault tolerant”

• The program gives a wrong result or crashes but the
security of the system is not compromised

• The resources are no longer accessible (locked)
or the OS crashes

• The program computes something that it is not suppose
to (malicious code)

Severity

How to find a program vulnerability?

• Find a bug yourself and investigate

• Take a look at CVE alerts
(Common Vulnerabilities and Exposures)

Timeline of a vulnerability

The program is released
with a vulnerability

The vulnerability is publicly
disclosed (CVE alert)

A patch is released

The patch is applied
A recommendation
is issued

Attacks

Let’s look at the most widespread type of attacks

• Buffer overflow attacks

• TOCTOU attacks

Buffer Overflow Attacks

What is the idea?
➡ Injecting wrong data input in a way that it will be interpreted

as instructions

How data can become instructions?
➡ Because the data and instructions are the same thing

binary values in memory

When was it discovered for the first time?
➡ Understood as early as 1972, first severe attack in 1988

What you need to know

• understand C functions

• familiar with assembly code

• understand the runtime stack and data encoding

• know how systems calls are performed

• understand the exec() system call

Stack execution
Allocate local buffer
(126 bytes in the stack)

Copy argument into local buffer

void func(char *str){
char buf[126];
strcpy(buf,str);

}

What if the buffer is overstuffed?

strcpy does not check whether the string
at *str contains fewer than 126 characters ...

… if a string longer than 126 bytes is copied into buffer,
it will overwrite adjacent stack locations

Injecting Code
Shellcode

Why are we still vulnerable to buffer overflows?

Why code written in assembly code or C are
subject to buffer overflow attacks?
➡ Because C has primitives to manipulate the memory directly

(pointers ect ...)
If other programming languages are “memory
safe”, why are we not using them instead?
• Because C and assembly code are used when a program

requires high performances (audio, graphics, calculus …)
or when dealing with hardware directly (OS, drivers ….)

TOCTOU attacks - Time Of Check to Time Of Use
(also called race condition attack)

What is the idea?
➡ A file access is preliminary checked but when using the file

the content is different

What kind of program does it target?
➡ Concurrent programs (with different privileges) that use files

to share data

A TOCTOU attack in 3 steps

1.The innocent user creates a file
2.The innocent users invokes a program executed with higher

privileges to use this file
3.The (not so) innocent user swapped the file with another

one that he or she has not the right to access

➡ The sequence of events requires precise timing
✓ Possible for an attacker to arrange such conditions

(race condition)

The printer attack on Unix

admin
(root)

Bob

ln -s innocent-file secret-file

What is a secure system?

Correctness (Safety) vs Security

Safety
Satisfy specifications

“for reasonable inputs,
get reasonable outputs”

Security
Resist attacks

“for unreasonable inputs,
get reasonable outputs”

The attacker is an active entity

One say that such program/os is more vulnerable

Some are ... so ...

more deployed than others more targeted by hackers

more complex than others more multiple points of failure

more open to third-party code
than others more “amateur” codes

How to compare OS and programs?

Source: Secunia “Half-year report 2010”

What Makes A Good Security Metric?
[Johnathan Nightingale]

• Severity
• Some bugs are directly exploitable
• Others requires the user to “cooperate”

• Exposure Window
• How long are users exposed to the vulnerability?

• Complete Disclosure
• Do vendors always disclose vulnerabilities found internally?

Penetration Testing
Discovering and Exploiting Vulnerabilities

Thierry Sans

Vulnerability Assessment vs Penetration Testing

Vulnerability assessment
➡ Identify and quantify the vulnerabilities of a system
http://www.sans.org/reading-room/whitepapers/basics/vulnerability-assessment-421

Penetration testing (a.k.a pentest)
➡ Deliberate attack of a system with the intention

of finding security weaknesses
http://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635

http://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635

Security tools

Reconnaissance NMAP
Mapping and Fingerprinting

Vulnerability
Assessment

OpenVAS
Vulnerability Scanner

Penetration Testing Metasploit
Exploit Framework

Nmap
Network Mapping

and Host Fingerprinting

About Nmap

http://nmap.org/

Created by Gordon Lyon in 1997

Already installed on Kali Linux

GUI version called Zenmap (also on Kali Linux)

Using NMAP

• Host discovery (ping based)
$ nmap -sP 10.0.1.0-255

• OS detection
$ nmap -O 10.0.1.101

• Full TCP port scanning
$ nmap -p0-65535 10.0.1.101

• Version detection
$ nmap -sV 10.0.1.101

• Export a full scan to a file
$ nmap -O —sV -p0-65535 10.0.1.101 -oN target.nmap

Other features

• UDP scan

• Stealth scan (to go through firewalls)

• Slow scan (to avoid detection)

• Scripting engine (to exploit vulnerabilities)

OpenVAS
Vulnerability Scanner

About OpenVAS

http://www.openvas.org/

Fork of Nessus (created in 1998)
Maintained by Greenbone Networks GMBH

Already installed on Kali Linux

Commercial alternatives :
Nessus, Nexpose, Core Impact, Retina Network Security Scanner

Setting up OpenVAS (on Kali Linux)

1. Update* signature database
$ openvas-setup

2. Start OpenVAS
$ openvas-start

3. Change* admin password
$ openvasmd —create-user=admin
$ openvasmd —new-password=admin —user=admin

4. Open the web interface
https://localhost:9392

* already done in the kali vagrant box provided for hw2

Using OpenVAS to discover vulnerabilities

Report

Metasploit
Exploit Framework

About Metasploit

http://www.metasploit.com/

Created by HD Moore in 2003
Acquired by Rapid7 in 2009

Already installed in Kali Linux

Commercial alternatives : Metasploit Pro, Core Impact

Setting up Metasploit (on Kali Linux)

1. update* exploit database
$ msfupdate

2. Start Postgresql and Metaploit services
$ service postgresql start
$ service metasploit start

3. Start Metasploit console
$ msfconsole

Using Metasploit to exploit a vulnerability

Example : UnrealIRCD 3.2.8.1 Backdoor Command
Execution

msf > use exploit/unix/irc/unreal_ircd_3281_backdoor

msf > show options

msf > set RHOST 10.0.1.101

msf > exploit

Success!

Armitage (Metasploit GUI)

http://www.fastandeasyhacking.com/

Created by Raphael Mudge

Already installed in Kali Linux

Start Armitage
$ armitage

Using Armitage

1. Add host(s)

2. Scan

3. Find attacks

4. Exploit attacks

References

NMAP reference Guide
http://nmap.org/book/man.html

OpenVAS
https://www.digitalocean.com/community/tutorials/how-to-use-openvas-to-audit-the-security-of-
remote-systems-on-ubuntu-12-04

Metasploit
http://www.offensive-security.com/metasploit-unleashed/Main_Page

https://www.digitalocean.com/community/tutorials/how-to-use-openvas-to-audit-the-security-of-remote-systems-on-ubuntu-12-04
https://www.digitalocean.com/community/tutorials/how-to-use-openvas-to-audit-the-security-of-remote-systems-on-ubuntu-12-04
http://www.offensive-security.com/metasploit-unleashed/Main_Page

