

Let us consider confidentiality, integrity and availability

Network (in)security

Thierry Sans

How many of you ...

- have programmed with **sockets** ?
- have taken a networking course ?
- have used tools like ?
 ping, traceroute, ipconfig/ifconfig, nslookup netstat, netcat, nmap, wireshark
- know what is :

IP address, port, a canonical hostname client, server, router switch (or hub), gateway

can explain with a fair amount of details :
 Ethernet, WiFi
 IP, TCP
 ARP, BGP, DNS

The Internet

1980's – few hosts connected : government institutions and universities

- Trustworthy environment
- 2019 ~ 4.2 billion internet users: network of networks
- ➡ <u>Untrustworthy</u> environment
- Internet (and its protocols) was not designed for untrustworthy environment

A network of networks

What is a protocol

Communication protocol

is an agreement on how communication should take place

- defines the data encoding and/or format
- defines the message sequence
- (most) protocols are standards defined by the IETF - The Internet Engineering Task Force

The Internet Protocol Suite (a.k.a the network stack)

Protocols are built on top of each other as layers (modularity and encapsulation)

- How can two programs send messages to each other ?
- How to make sure that messages have been well transmitted ?
- How to route messages through the network ?
- How to encode messages to go through copper, fiber or air ?

The attacker is capable of ...

Scanning - survey the network and its hosts

- Eavesdropping read messages
- **Spoofing** forge illegitimate messages
- **DOS** (Denial of Service) disrupt the communications
- ➡ The attacker can target <u>any layer in the network stack</u>

connecting machines together

Link Layer

Collection of protocols to connect hosts through a medium

Defines how information is encoded to go through copper, fiber, air, etc ...

Multiple Interfaces

A host can be connected to several hosts or networks through **multiple interfaces**

- Some are connected to a single host only (Point-to-Point)
- Others are connected to a entire network (BUS)

Point-to-Point Link

<u>Only two hosts</u> are connected at each end of the medium e.g. OTN, IRDA, DSL ...

Harder for an attacker to intercept messages

Bus Link (a.k.a LAN - Local Area Network)

<u>Several hosts</u> are connected to the same medium with a unique physical address called

e.g. Ethernet and WiFi uses MAC Media Access Control addresses

Easier for the attacker to intercept messages since they are all broadcasted to the same medium

Packet Sniffing over Ethernet or WiFi

- All messages are transmitted on the medium with the MAC address of the recipient
- Each network interface only picks messages that correspond to its MAC address
- An attacker can set its network interface in promiscuous mode to capture (sniff) all traffic e.g. Wireshark

The WiFi Cactus @DefCon'19

source: theoutline.com

Network Layer connecting networks together

The Network Layer

Collection of protocols to connect networks together

Defines how messages are routed through the different networks based on IP addresses

IP - Internet Protocol

- Each message has the IP address of the issuer and recipient
- Routers route packet based on their routing table and a default route
- ➡ Best effort protocol

ICMP - Internet Control Message Protocol

Exchange information about the network

e.g. error reporting, congestion control, network reachability

- ping, traceroute

Host Discovery

By default, hosts answer to ICMP echo request messages

- An attacker scan an entire network to find IP addresses of active hosts
 - e.g. nmap (does that among other things)

integrity availability

IP Spoofing

- Routers do not validate the source
- Receiver cannot tell that the source has been spoofed
- An attacker can generate raw IP packets with custom IP source fields

e.g. DOS (blackhole) and MITM attacks

ICMP ping of death (before 1997)

Any host receiving a 64K ICMP payload would crash or reboot

- 64K bytes payload were <u>assumed</u> to be invalid by programmers
- An attacker could split a 64K payload, transmit it and would be reassembled by the receiver overflowing a buffer

Security Bulletin Microsoft Security Bulletin MS10-009 -Critical

Vulnerabilities in Windows TCP/IP Could Allow Remote Code Execution (974145)

Published: February 09, 2010 | Updated: February 10, 2010

Version: 1.1

General Information

Executive Summary

This security update resolves four privately reported vulnerabilities in Microsoft Windows. The most severe of these vulnerabilities could allow remote code execution if specially crafted packets are sent to a computer with IPv6 enabled. An attacker could try to exploit the vulnerability by creating specially crafted ICMPv6 packets and sending the packets to a system with IPv6 enabled. This vulnerability may only be exploited if the attacker is on-link.

ICMP Ping Flood

An attacker can overwhelm a host by sending multiples ICMP echo requests

ICMP Smurf Attack - an elaborated ping flood attack

Classic Denial of Service (DoS) asymmetry:

cheap for attacker, expensive for victim, due to protocol amplification

Transport Layer end-to-end connection

The Transport Layer

Collection of protocols to ensure end-toend connections

- Allows hosts to have multiple connections through ports
- Allows messages to be fragmented into small IP packets
- ➡ Make sure that all packets are received

TCP - Transmission Control Protocol

- The sender divides data-stream into packets sequence number is attached to every packet
- The receiver checks for packets errors, reassembles packets in correct order to recreate stream
- ACK (acknowledgements) are sent when packets are well received and lost/corrupt packets are re-sent
- Connection state maintained on both ends

TCP "3-way" handshake

Port scanning

Using the "3-way" handshake, an attacker can scan for all open ports for a given host

e.g. nmap

TCP-syn flooding

Note asymmetric effort between attacker client and victim server

TCP Connection Reset (DOS)

Each TCP connection (i.e each port) has an associated state sequence number

An attacker can guess (sniff) the current sequence number for an existing connection and send packet with reset flag set, which will close the connection

UDP - User Datagram Protocol

UDP is a connectionless transport-layer protocol

No acknowledgement, no flow control, no message continuation, no reliability guarantees

e.g. media streaming (VoIP, video broadcasting)

e.g modern protocols (HTTP 3)

UDP Flood

When a UDP packet is received on a non-opened port, the host replies with an **ICMP Destination Unreachable**

An attacker can send a large number of UDP packets to all ports of a target host

e.g Low Orbit Ion Cannon

The TCP/IP Stack

Layering

TCP/IP

Data encapsulation

Special Protocols

ARP - Address Resolution Protocol

Each host has an ARP table that contains mapping between MAC and IP addresses

 Host broadcasts their own IP address and MAC address to others to build their ARP table

ARP Cache Poisoning

- An attacker can broadcast fake IP-MAC mappings to the other hosts on the network
 - e.g. DOS and MITM attacks

BGP - Border Gateway Protocol (a.k.a routing)

Each router has a routing table to IP messages BGP is the protocol for establishing routes

Routers advertise the best route to other nearby routers depending on the state of the network

confidentiality availability

An attacker can advertise fake routes e.g. DOS (blackhole) and MITM attacks

Route hijacking

Pakistan's Accidental YouTube Re-Routing Exposes Trust Flaw in Net

A Pakistan ISP that was ordered to censor YouTube accidentally managed to take down the video site around the world for several hours Sunday.

Source: Wired

DNS - Domain Name Server

Internet applications relies on canonical hostname rather than IP addresses

DNS servers translates domain names into IP addresses

DNS servers form a distributed directory service by exchanging information about domains and other DNS servers

DNS Cache Poisoning

An attacker can advertise fake DNS information
 e.g. DOS and MITM attacks

The Protocol Stack

The attacker is capable of ...

Scanning - survey the network and its hosts

- Eavesdropping read messages
- **Spoofing** forge illegitimate messages
- **DOS** (Denial of Service) disrupt the communications
- ➡ The attacker can target <u>any layer in the network stack</u>

Route Hijacking (spoofing, DOS)
DNS-cache poisoning (spoofing, DOS)