
Cryptography Protocols

Thierry Sans

Security goals vs attacker's model

Let us consider confidentiality, integrity and availability

Interception
Modification
Fabrication
Interruption

Example

[request]debit=50

[response]950

Ensuring confidentiality and integrity
with Authenticated Encryption

E, D, H, K
E, D, H, K

AEk("[request]debit=50")

AEk("[response]950")

3O354WxPYF...

15qcK3Xcdwd ...

ADk("3O354WxPYF...")

ADk("15qcK3Xcdwd...")

Overview

• Replay attacks in interactive protocols

• A symmetric protocol for key exchange
(Needham–Schroeder Key Exchange Protocol)

• A symmetric protocol for key exchange
(Diffie-Hellman-Merkle Protocol)

• The challenge of authentication
(Needham–Schroeder Authentication Protocol)

• Putting it all together (TLS)

• Trust models (PKI)

Replay attacks

Replay attack

{req}Kab

{req}Kab

{res'}Kab

{res}Kab

Counter replay attacks

Several solutions:
• use a nonce (random number)
• use sequence numbers
• use timestamps
• have fresh key for every transaction

(key exchange problem)

Defeat replay attack with a nonce
(not fully secured)

A

Replay attack on the response!

{req, NB}Kab

{res}Kab

{NB}Kab

Defeat replay attack with a double nonce

A

{req, NA, NB}Kab

{res, NA}Kab

{NB}Kab

A symmetric protocol

for key exchange

How do we agree
on the ?

The big challenge with symmetric cryptosystems?

E D

Naive Key Management

A1, A2 … A5 want to talk
➡ Each pair needs a key : n (n-1) / 2 keys
๏ Keys must be exchanged physically using a secure channel

A1

A2

A3A4

A5

(Better) centralized solution

A1, A2 … A5 can talk to the KDC (Key Distribution Center)
➡ When Ai and Aj want to talk, the KDC can generate a new key and

distribute it to them

๏ We still have n keys to distribute somehow using a secure channel

๏ The KDC must be trusted

๏ The KDC is a single point of failure
➡ The is how Kerberos works

A1

A2

A3A4

A5

The Needham-Shroeder symmetric protocol
for key exchange

Assumptions
• 4 principals : Alice, Bob, Mallory, Key Distribution Server

• S shares a key with A, B and M respectively Kas, Kbs, Kms

• A, B, M and S talk to each other using the same protocol

Goals
When two parties want to engage in the communication, they want to

1. make sure that they talk to the right person (authentication)
2. establish a session key

The vulnerable version of the protocol (1978)

A, B, NA

{NA, Kab, B, {Kab, A}Kbs}Kas

{Kab, A}Kbs

{NB}Kab

{NB-1}Kab

Replay attack (1981)

{Kab, A}Kbs

{NB}Kab

{NB-1}Kab

Assuming Kab has been
compromised somehow,
it can be reused

The fix (1987)

A, B, NA, {A, NB'}Kbs

{NA, Kab, B, {Kab, A, NB'}Kbs}Kas

{Kab, A, NB'}Kbs

{NB-1}Kab

A

{NB}Kab

{A, NB'}Kbs

Kerberos

The Needham-Shroeder symmetric protocol is the basis for
the Kerberos Protocol

➡ Use by Microsoft Windows for key exchange between
machines on the same domain manage by the Active
Directory

An asymmetric protocol
for key exchange

Limitations of using a key distribution centre

The key distribution server is a bootleneck and weak link

๏ The attacker could record the key exchange and the
encrypted session, if one day either Kas or Kbs is broken, the
attacker can decrypt the session

➡ Having a KDC does not ensure
Perfect Forward Secrecy

Key exchange using asymmetric encryption

๏ The attacker could record the encrypted session, if one day either
KsA or KsB is broken, the attacker can decrypt part of the session

➡ Using asymmetric encryption for key exchange does not ensure
Perfect Forward Secrecy

KsA, KpA

KpA

RSAKpA(k2), AESk2(m2)

KsB, KpB

RSAKpB(k1), AEk1(m1)

What is the solution?

Could Alice and Bob could magically come up with a key without
exchanging it over the network?

➡ The magic is called Diffie-Hellman-Merkle Protocol

K = gab mod p = (ga mod p)b mod p = (gb mod p)a mod p

p,g p,g

a b

A = ga mod p B = gb mod p

K = Ba mod p K = Ab mod p

The Diffie-Hellman-Merkel key exchange protocol

The Diffie-Hellman-Merkel key exchange protocol

A, p, g

B

1. Generates public numbers p and g
such that g if co-prime to p-1

2. Generates a secret number a
3. Sends A = ga mod p to Bob

1. Generates a secret number b
2. Sends B = gb mod p back to Alice
3. Calculates the key K = Ab mod p

4. Calculates the key K = Ba mod p

Diffie-Hellman-Merkle in practice

• g is small (either 3, 5 or 7 and fixed in practice)
• p is at least 2048 bits (and fixed in practice)
• private keys a and b are 2048 bits as well
➡ So the public values A and B

and the master key k are 2048 bits
➡ Use k to derive an AES key using a Key Derivation Function

(usually HKDF - the HMAC-based Extract-and-Expand key derivation function)

A widely used key exchange protocol

Diffie-Hellman-Merkle is in many protocols
• SSH
• TLS (used by HTTPS)
• Signal (used by most messaging apps like Whatsapp)
• and so on . . .

✓ It is fast and requires two exchanges only
✓ Solves the problem of having a key distribution server
✓ Ensures Perfect Forward Secrecy

๏ But how to make sure Alice is talking to Bob and vice-versa?
Diffie-Hellman-Merkle alone does not ensure authentication

Another Challenge

1. Establish a session key to exchange data while ensuring
Perfect Forward Secrecy
✓ Use the Diffie-Hellman key exchange protocol

2. Ensure one-way or mutual authentication
✓ Use asymmetric encryption

The Needham-Schroeder
public-key protocol

for mutual authentication

Assumptions and Goals

Assumptions
• 4 principals : Alice, Bob, Mallory and a Public-Key Server
• Alice, Bob, Mallory and the Server have generated their own public/

private key pair
• Alice, Bob and Mallory know the Server's public key Kps

• A, B, M and S talk to each other using the same protocol

Goals
When two parties want to engage in the communication, they want to
make sure that they talk to the right person (authentication)

The vulnerable version (1978)

A, B

{Kpb, B}Kss

{NA, A}Kpb

{NA, NB}Kpa

{NB}Kpb

B, A

{Kpa, A}Kss

“Hi, Alice!”

Simplified (but still vulnerable) version (1978)

{NA, A}Kpb

{NA, NB}Kpa

{NB}Kpb

“Hi, Alice!”

Man-in-the-middle attack (Lowe’s 1995)

{NA, A}Kpm

“Hi, Alice!”

{NA, NB}Kpa

{NA, A}Kpb

{NB}Kpb{NB}Kpm

Lowe’s fix (1995)

{NA, A}Kpb

{NA, NB, B}Kpa

{NB}Kpb

“Hi, Alice!”

Not a perfect protocol yet

✓ Does authenticate Alice and bob
✓ Does prevent replay attacks
✓ Does ensure the authenticity of the public keys
๏ But the Public Key Server is a single point of failure

TLS - Transport Layer Security
a.k.a SSL - Secure Sockets Layer

✓ HTTPS = HTTP + TLS

➡ TLS - Transport Layer Security (a.k.a SSL) provides
• confidentiality : end-to-end secure channel
• integrity : one-way authentication handshake

This how HTTPS works

example.com

HTTPS request

HTTPS response

Who are you?

I am example.com

simplified and one-way authentication
 TLS 1.2 (2008)

NA

NB, DHB, CertB, sign(H(NA || NB || DHB))

DHA

Fin

simplified and one-way authentication
 TLS 1.3 (2018)

NA, ECDHA

NB, ECDHB, [CertB, sign(H(NA || NB || ECDHA || ECDHB || CertB))]K

TLS 1.3 is much better than TLS 1.2

✓ Only one round in the handshake (vs 2 with TLS 1.2)

✓ Faster (use of elliptic curves)

✓ Certificate is encrypted (better confidentiality)

✓ Protocol has been formally proven
(dos not prevent from implementation bugs)

Almost there . . .

✓ Does ensure the confidentiality of the communication
✓ Does authenticate Alice and bob
✓ Does prevent replay attacks
➡ But how to ensure the authenticity of the public keys

without using a Public Key Server ?

Trust Models

Two trust models

How to establish the authenticity of the binding between
someone and its public key ?

Decentralized trust model
➡ Web of Trust

Centralized trust model
➡ PKI - Public Key Infrastructure

Do you trust the GPG key ?

Alice should verify Bob’s public key fingerprint
• either by communicating with Bob over another channel
• or by trusting someone that already trusts Bob
➡ the web of trust

Alice Bob

I am Bob!

Pkm

The web of trust
Alice

Dan

ErinCarol

Bob

trust
i.e has_signed Pk

transitive trust

Do you trust the network ?

example.com

I am example.com!

The browser should verify the certificate
➡ PKI - Public Key Infrastructure

Generating and using (self-signed) certificates

Who are you?

I am example.com

I don’t know

Self-signed certificates
are not trusted by
your browser

Signed Certificate Certificate Authority (CA)

Who are you?

I am example.com

I trust so

The Chain of Trust Root CA

Intermediate
CA

Intermediate
CA

I trust
so ⇒ ⇒ ⇒

Your browser trusts many root CAs by default

Real attacks

Limitation of secure channels

