
Symmetric Encryption

Thierry Sans

Design principles (reminder)

1. Kerkoff Principle
The security of a cryptosystem must not rely on keeping the algorithm
secret

2. Diffusion
Mixing-up symbols

3. Confusion
Replacing a symbol with another

4. Randomization
Repeated encryptions of the same text are different

The attacker's model

• Exhaustive Search
Try all possible n keys (in average it takes n/2 tries)

• Ciphertext only
You know one or several random ciphertexts

• Known plaintext
You know one or several pairs of random plaintext and their corresponding ciphertexts

• Chosen plaintext
You know one or several pairs of chosen plaintext and their corresponding ciphertexts

• Chosen ciphertext
You know one or several pairs of plaintext and their corresponding chosen ciphertexts

➡ A good crypto system resists all attacks

Functional Requirements

E D

➡ The same key k is used for encryption E and decryption D

1. Dk(Ek(m))=m for every k, Ek is an injection with inverse Dk

2. Ek(m) is easy to compute (either polynomial or linear)

3. Dk(c) is easy to compute (either polynomial or linear)

4. c = Ek(m) finding m is hard without k (exponential)

Outline

Stream cipher

RC4 - Rivest Cipher 4 (now deprecated)
Salsa20 (and ChaCha20)

Block cipher

• Encryption standards
DES (and 3DES) - Data Encryption Standard (now deprecated)

AES - Advanced Encryption Standard

• Block cipher modes of operation

Stream Cipher

XOR Cipher (a.k.a Vernham Cipher)
a modern version of Vigenere

Use ⊕ to combine the message and the key

Ek(m) = k ⊕ m
Dk(c) = k ⊕ c

Dk(Ek(m)) = k ⊕ (k ⊕ m) = m

Problem : known-plaintext attack
so k = (k ⊕ m) ⊕ m

x ⊕ x = 0
x ⊕ 0 = x

Mauborgne Cipher - a modern version of OTP

Use a random stream as encryption key
➡ Defeats the know-plaintext attack

Problem : Key-reused attack (a.k.a two-time pad)

C1 = k ⊕ m1

C2 = k ⊕ m2

so C1 ⊕ C2 = (k ⊕ m1) ⊕ (k ⊕ m2)
= (m1⊕ m2) ⊕ 0
= (m1⊕ m2)

x ⊕ x = 0
x ⊕ 0 = x

Random Number Generator

True Random Number Generator
➡ No, because we want to be able to encrypt and decrypt

Pseudo-Random Generator
➡ Stretch a a fixed-size seed to obtain an unbounded random

sequence

Stream cipher

Can we use k as a seed?

Ek(m) = m ⊕ RNG(k)

➡ Be careful of key reused attack !

RC4 - Rivest Cipher 4

Key Size 40 - 2048 bits

Speed ~ 8 cycles / byte

Very simple implementation

Designed in 1987 ... but broken in 2015

MS Word and Excel 2003 used the same key to re-encrypt
documents after editing changes

WEP - Wired Equivalent Privacy

➡ A random number IV (24 bits only) transmitted in clear
between the clients and the base station

RC4_key = IV + SSID_password

๏ 50% chance the same IV will be used again after 5000 packets

Salsa20 (and ChaCha20)

Key Size 128 or 256 bits

Speed ~ 4 cycles / byte

Block Cipher

Ideal block cipher

• Combines confusion (substitution) and diffusion (permutation)
• Changing single bit in plaintext block or key results in changes

to approximately half the ciphertext bits
➡ Completely obscure statistical properties of the original

message
➡ A known-plaintext attack does not reveal the key

n bits n bits

Em c

k
n' bits

DES - Data Encryption Standard

Timeline
• 1972 NBS call for proposals
• 1974 IBM Lucifer proposal

 analyzed by DOD and enhanced by NSA
• 1976 adopted as standard
• 2004 NIST withdraws the standard

Block size 64 bits
Key Size 56 bits
Speed ~ 50 cycles per byte
Algorithm Feistel Network

(FYI) Feistel Network

Li = Ri-1

Ri = Li-1 ⊕ Fi(Ri-1,ki)

Properties:
• F is an arbitrary function that

scrambles the input based on a key
• F is not necessary invertible
• A Feistel Network is invertible
➡ Achieves confusion and diffusion

“Cryptography and Network Security”
by William Stalllings

Security of DES -
DES Challenges (brute force contests)

1998 Deep Crack, the EFF's DES cracking machine used 1,856
custom chips
• Speed : matter of days
• Cost : $250,000

2006 COPACOBANA, the Cost-optimized Parallel CodeBreaker
used 120 FPGAs
• Speed : less than 24h
• Cost : $10,000

How about 2DES ?

2DESk1,k2(m) = Ek2(Ek1(m))

Meet-in-the-middle attack - known-plaintext attack
1. Brute force Ek1(m) and save results in a table called TE (256 entries)
2. Brute force Dk2(c) and save results in a table called TD (256 entries)
3. Match the two tables together to get the key candidates
➡ The more plaintext you know, the lesser key candidates
➡ Effective key-length (entropy) is 57 bits
➡ This attacks applies to every encryption algorithm used as such

3DES (Triple DES)

3DESk1,k2,k3(m) = Ek3(Dk2(Ek1(m)))

➡ Effective key length (entropy) : 112 bits

✓ Very popular, used in PGP, TLS (SSL) …

๏ But terribly slow

AES - Advanced Encryption Standard

Timeline

• 1996 NIST issues public call for proposal

• 1998 15 algorithms selected

• 2001 winner was announced

Rijndael by J. Daemen and V. Rijmen

Adopted by the NIST in December 2001

Block size 128 bits

Key Size 128, 192, 256 bits

Speed ~18-20 cycles / byte

Mathematical
Foundation Galois Fields

Implementation • Basic operations : ⊕, + , shift
• Small code : 98k

(pure) Encryption Modes
a.k.a. how to encrypt long messages

ECB - Electronic Code Book

CBC - Cipher Block Chaining

CFB - Cipher Feedback

OFB - Output Feedback

CTR - Counter

ECB - Electronic Code Book (a.k.a Block Mode)

Each plaintext block is encrypted independently with the key
✓ Block can be encrypted in parallel
๏ The same block is encrypted to the same ciphertext

How bad is ECB mode with a large data?

source: Wikimedia

source: XKCD

source: Security Boulevard

CBC - Cipher Block Chaining (a.k.a Chaining Mode)

Introduce some randomness using the previous ciphertext block
✓ Repeating plaintext blocks are not exposed in the ciphertext
๏ No parallelism
➡ The Initialization Vector should be known by the recipient

CTR - Counter Mode

Introduce some randomness using a counter
✓ High entropy and parallelism
๏ Behaves as a stream cipher - sensitive to key-reused attack

Key-reused attack on CTR

⊕ K =

⊕ K =

⊕ =

Stream Cipher vs Block Cipher

Stream cipher and block cipher are often used together
• Stream cipher for encrypting large volume of data
• Block cipher for encrypting fresh pseudo-random seeds

Stream Cipher Block Cipher

Approach
Encrypt one symbol of
plaintext directly into a
symbol of ciphertext

Encrypt a group of
plaintext symbols as
one block

Pro Fast High diffusion

Cons Low diffusion Slow

Latest trends

AES is now hardware accelerated (AES-NI native instruction)

➡ AES is fast enough (~1.3 cycles per byte)
to be used as the go-to cipher for any application

https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-with-
the-aes-ni-instruction-set-to-bru

https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-with-the-aes-ni-instruction-set-to-bru
https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-with-the-aes-ni-instruction-set-to-bru

Preventing Key Reused Attacks

At best, use a fresh symmetric key every time
๏ Key exchange problem

At least, change the seed to never it use it twice
✓ All modern stream cipher (Salsa/Chacha) and good

encryption mode for block cipher (CBC, CTR) take a nonce
➡ Generate this nonce randomly and sent it in clear with

cyphertext

Are we secured?

Security goals vs attacker's model

Let us consider confidentiality, integrity and availability

Interception
Modification
Fabrication
Interruption

(pure) encryption ensures confidentiality ...

Ek(m) = tkS3bffBp...

K K

tkS3bffBpdJvr96+mpLIAp0=

Dk("tkS3bffBp...") = m

... but does not ensure integrity !

๏ Encrypting a message does not authenticate it

Ek(m) = tkS3bffBp...

K K

tkS3bffBp...

Dk("aOhe7kCC...") = m'

aOhe7kCC...

One more issue ...

๏ How does Alice and Bob agree on a symmetric key?

K ?

tkS3bffBp...

Ek(m) = tkS3bffBp...

