
Using Cryptography
to Protect Confidentiality

Thierry Sans

Overview

• Symmetric Encryption
• Stream Cipher
• Block Cipher (and block cipher modes)

• Asymmetric Encryption

• Key Exchange

Symmetric Encryption

Design principles (reminder)

1. Kerkoff Principle
The security of a cryptosystem must not rely on keeping the algorithm
secret

2. Diffusion
Mixing-up symbols

3. Confusion
Replacing a symbol with another

4. Randomization
Repeated encryptions of the same text are different

The attacker's model

• Exhaustive Search
Try all possible n keys (in average it takes n/2 tries)

• Ciphertext only
You know one or several random ciphertexts

• Known plaintext
You know one or several pairs of random plaintext and their corresponding ciphertexts

• Chosen plaintext
You know one or several pairs of chosen plaintext and their corresponding ciphertexts

• Chosen ciphertext
You know one or several pairs of plaintext and their corresponding chosen ciphertexts

➡ A good crypto system resists all attacks

Functional Requirements

E D

➡ The same key k is used for encryption E and decryption D

1. Dk(Ek(m))=m for every k, Ek is an injection with inverse Dk

2. Ek(m) is easy to compute (either polynomial or linear)

3. Dk(c) is easy to compute (either polynomial or linear)

4. c = Ek(m) finding m is hard without k (exponential)

Two Families of Symmetric Encryption Schemes

Stream cipher

RC4 - Rivest Cipher 4 (now deprecated)
Salsa20 (and ChaCha20)

Block cipher

• Encryption standards
DES (and 3DES) - Data Encryption Standard (now deprecated)

AES - Advanced Encryption Standard

• Block cipher modes of operation

Symmetric Encryption

Stream Cipher

XOR Cipher (a.k.a Vernham Cipher)
a modern version of Vigenere

Use ⊕ to combine the message and the key

Ek(m) = k ⊕ m
Dk(c) = k ⊕ c

Dk(Ek(m)) = k ⊕ (k ⊕ m) = m

Problem : known-plaintext attack
so k = (k ⊕ m) ⊕ m

x ⊕ x = 0
x ⊕ 0 = x

Mauborgne Cipher - a modern version of OTP

Use a random stream as encryption key
➡ Defeats the know-plaintext attack

Problem : Key-reused attack (a.k.a two-time pad)

C1 = k ⊕ m1

C2 = k ⊕ m2

so C1 ⊕ C2 = (k ⊕ m1) ⊕ (k ⊕ m2)
= (m1⊕ m2) ⊕ 0
= (m1⊕ m2)

x ⊕ x = 0
x ⊕ 0 = x

Random Number Generator

True Random Number Generator
➡ No, because we want to be able to encrypt and decrypt

Pseudo-Random Generator
➡ Stretch a a fixed-size seed to obtain an unbounded random

sequence

Stream cipher

Can we use k as a seed?

Ek(m) = m ⊕ RNG(k)

➡ Be careful of key reused attack !

RC4 - Rivest Cipher 4

Key Size 40 - 2048 bits

Speed ~ 8 cycles / byte

Very simple implementation

Designed in 1987 ... but broken in 2015

MS Word and Excel 2003 used the same key to re-encrypt
documents after editing changes

WEP - Wired Equivalent Privacy

➡ A random number IV (24 bits only) transmitted in clear
between the clients and the base station

RC4_key = IV + SSID_password

๏ 50% chance the same IV will be used again after 5000 packets

Salsa20 (and ChaCha20)

Key Size 128 or 256 bits

Speed ~ 4 cycles / byte

Symmetric Encryption

Block Cipher

Ideal block cipher

• Combines confusion (substitution) and diffusion (permutation)
• Changing single bit in plaintext block or key results in changes

to approximately half the ciphertext bits
➡ Completely obscure statistical properties of the original

message
➡ A known-plaintext attack does not reveal the key

n bits n bits

Em c

k
n' bits

DES - Data Encryption Standard

Timeline
• 1972 NBS call for proposals
• 1974 IBM Lucifer proposal

 analyzed by DOD and enhanced by NSA
• 1976 adopted as standard
• 2004 NIST withdraws the standard

Block size 64 bits
Key Size 56 bits
Speed ~ 50 cycles per byte
Algorithm Feistel Network

(FYI) Feistel Network

Li = Ri-1

Ri = Li-1 ⊕ Fi(Ri-1,ki)

Properties:
• F is an arbitrary function that

scrambles the input based on a key
• F is not necessary invertible
• A Feistel Network is invertible
➡ Achieves confusion and diffusion

“Cryptography and Network Security”
by William Stalllings

Security of DES -
DES Challenges (brute force contests)

1998 Deep Crack, the EFF's DES cracking machine used 1,856
custom chips
• Speed : matter of days
• Cost : $250,000

2006 COPACOBANA, the Cost-optimized Parallel CodeBreaker
used 120 FPGAs
• Speed : less than 24h
• Cost : $10,000

How about 2DES ?

2DESk1,k2(m) = Ek2(Ek1(m))

Meet-in-the-middle attack - known-plaintext attack
1. Brute force Ek1(m) and save results in a table called TE (256 entries)
2. Brute force Dk2(c) and save results in a table called TD (256 entries)
3. Match the two tables together to get the key candidates
➡ The more plaintext you know, the lesser key candidates
➡ Effective key-length (entropy) is 57 bits
➡ This attacks applies to every encryption algorithm used as such

3DES (Triple DES)

3DESk1,k2,k3(m) = Ek3(Dk2(Ek1(m)))

➡ Effective key length (entropy) : 112 bits

✓ Very popular, used in PGP, TLS (SSL) …

๏ But terribly slow

AES - Advanced Encryption Standard

Timeline

• 1996 NIST issues public call for proposal

• 1998 15 algorithms selected

• 2001 winner was announced

Rijndael by J. Daemen and V. Rijmen

Adopted by the NIST in December 2001

Block size 128 bits

Key Size 128, 192, 256 bits

Speed ~18-20 cycles / byte

Mathematical
Foundation Galois Fields

Implementation • Basic operations : ⊕, + , shift
• Small code : 98k

(pure) Encryption Modes
a.k.a. how to encrypt long messages

ECB - Electronic Code Book

CBC - Cipher Block Chaining

CFB - Cipher Feedback

OFB - Output Feedback

CTR - Counter

ECB - Electronic Code Book (a.k.a Block Mode)

Each plaintext block is encrypted independently with the key
✓ Block can be encrypted in parallel
๏ The same block is encrypted to the same ciphertext

How bad is ECB mode with a large data?

source: Wikimedia

source: XKCD

source: Security Boulevard

CBC - Cipher Block Chaining (a.k.a Chaining Mode)

Introduce some randomness using the previous ciphertext block
✓ Repeating plaintext blocks are not exposed in the ciphertext
๏ No parallelism
➡ The Initialization Vector should be known by the recipient

CTR - Counter Mode

Introduce some randomness using a counter
✓ High entropy and parallelism
๏ Behaves as a stream cipher - sensitive to key-reused attack

Key-reused attack on CTR

⊕ K =

⊕ K =

⊕ =

Symmetric Encryption

Stream Cipher vs Block Cipher

Stream cipher and block cipher are often used together
• Stream cipher for encrypting large volume of data
• Block cipher for encrypting fresh pseudo-random seeds

Stream Cipher Block Cipher

Approach
Encrypt one symbol of
plaintext directly into a
symbol of ciphertext

Encrypt a group of
plaintext symbols as
one block

Pro Fast High diffusion

Cons Low diffusion Slow

Latest trends

AES is now hardware accelerated (AES-NI native instruction)

➡ AES is fast enough (~1.3 cycles per byte)
to be used as the go-to cipher for any application

https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-with-
the-aes-ni-instruction-set-to-bru

https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-with-the-aes-ni-instruction-set-to-bru
https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-with-the-aes-ni-instruction-set-to-bru

Are we secured?

Security goals vs attacker's model

Let us consider confidentiality, integrity and availability

Interception
Modification
Fabrication
Interruption

(pure) encryption ensures confidentiality ...

Ek(m) = tkS3bffBp...

K K

tkS3bffBpdJvr96+mpLIAp0=

Dk("tkS3bffBp...") = m

... but does not ensure integrity !

๏ Encrypting a message does not authenticate it

Ek(m) = tkS3bffBp...

K K

tkS3bffBp...

Dk("aOhe7kCC...") = m'

aOhe7kCC...

One more issue ...

๏ How does Alice and Bob agree on a symmetric key?

K ?

tkS3bffBp...

Ek(m) = tkS3bffBp...

Asymmetric Encryption

Asymmetric encryption
a.k.a Public Key Cryptography

E D

private keypublic key

➡ The public key for encryption
➡ The private key for decryption

Asymmetric keys

Alice generates a pair of asymmetric keys
• KsA is the secret key that Alice keeps for herself
• KpA is the public key that Alice gives to everyone

(even Mallory)
➡ These two keys KsA and KpA work together

KsA, KpA KpA KpA

Asymmetric encryption for confidentiality

Bob encrypts a message m with Alice's public key KpA
➡ Nobody can decrypt m, except Alice with her private key KsA

✓ Confidentiality without the need to exchange a secret key

KsA, KpA KpA KpA

EKpa(m)

DKsA(EKpA(m)) = m

Functional Requirements

DKs(EKp(m)) = m and DKp(EKs(m)) = m for every pair (Kp, Ks)

✓ Generating a pair (Kp, Ks) is easy to compute (polynomial)

✓ Encryption is easy to compute (either polynomial or linear)

✓ Decryption is easy to compute (either polynomial or linear)

๏ Finding a matching key Ks for a given Kp is hard (exponential)

๏ Decryption without knowing the corresponding key is hard
(exponential)

RSA - Rivest, Shamir and Alderman

Key Size 1024 - 4096

Speed

~ factor of 106 cycles / byte
• Key generation: 10 - 100 ms
• Encryption: 0.2 - 2 ms
• Decryption: 5 - 10 ms

Mathematical
Foundation Prime number theory

Number Theory - Prime numbers

Prime Numbers
• p is prime if 1 and p are its only divisors e.g 3, 5, 7, 11 …
• p and q are relatively prime (a.k.a. coprime) if gcd(p,q) = 1

e.g gcd(4,5) = 1

➡ There are infinitely many primes

Euler-Fermat Theorem
If n = p . q and z = (p-1).(q-1)
and a such that a and n are relative primes
Then az ≡ 1 (mod n)

Computational Complexity

Easy problems with prime numbers
• Generating a prime number p
• Addition, multiplication, exponentiation
• Inversion, solving linear equations

Hard problem with prime numbers
• Factoring primes

e.g. given n find p and q such that n = p . q

RSA - generating the key pair

1. Pick p and q two large prime numbers and calculate n = p . q
(see primality tests)

2. Compute z = (p-1).(q-1)

3. Pick a prime number e < z such that e and z are relative primes
➡ (e,n) is the public key

4. Solve the linear equation e * d = 1 (mod z) to find d
➡ (d,n) is the private key

however p and q must be kept secret too

RSA - encryption and decryption

Given Kp = (e, n) and Ks = (d,n)

➡ Encryption : Ekp(m) = me mod n = c

➡ Decryption : Dks(c) = cd mod n = m

➡ (me)d mod n = (md)e mod n = m

The security of RSA

RSA Labs Challenge : factoring primes set

Key length Year Time

140 1999 1 month

155 1999 4 months

160 2003 20 days

200 2005 18 months

768 2009 3 years

Challenges are no longer active

ECC - Elliptic-Curve Cryptography

Key Size 256 or 448 bits

Speed

~ factor of 106 cycles / operation
• Key generation: 1 - 5 ms (way faster than RSA)
• Encryption: 1 - 5 ms
• Decryption: 1 - 5 ms

Mathematical
Foundation Elliptic curves over finite fields

Main ECC Standards

secp256k1 curve25519 curve448

Year 2000 2005 2014

Inventor

Standards for
Efficient

Cryptography
Group (SECG)

Daniel J.
Bernstein Mike Hamburg

Key Size 256 256 448

Applications Bitcoin
Ethereum

TLS, TOR
Signal Protocol
Monero, Zcash

TLS

Performances + ++ +++

Elliptic Curve Cryptography

Use Elliptic-curve for generating a cryptographic public-key pair
The algorithm is based on two public pieces:

• The curve equation y^2 = x^3 + ax + b (a and b are fixed values)

• The generator point (fixed value)

When generating a key pair
1. the user "choose a random number" (within a given range) as private key
2. then derived the public key from the curve

✓ Smaller key sizes: 256 bits EC keys has the same entropy as RSA 3072 bits

✓ Can be used for digital signature (ECDSA algorithm)

✓ Can be used for key agreement (ECDH algorithm)

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-
cryptography/

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

Symmetric vs Asymmetric

Key length and Key n-bit security

• RSA has very long keys, 1024, 2048 and 4096 are common
• ECC has shorter keys, 256 and 448 are common
• Is it more secure than symmetric crypto with key lengths of

56, 128, 192, 256 ?
➡ Key lengths do not compare !

RSA ECC Effective key length
1,024 80
2,048 112
3,072 256 128
4096 140

15,360 448 224 ~ 256

Asymmetric vs Symmetric

The best of both worlds
➡ Use asymmetric encryption to encrypt a shared key (or hash)
➡ Use symmetric encryption to encrypt message

EKp(m) = RSAKp(k), AESk(m)

Symmetric Asymmetric

pro Fast No key agreement

cons Key agreement Very slow

Naive
approach

Key Exchange Protocols

Naive key exchange using asymmetric encryption

๏ Protecting the shared key is the responsibility of Alice only

๏ Generating the shared key is the responsibility of Bob only

EKpA(k), Ek(m)

KpA

1. Decrypt k = DKsA(EKpA(k))
2. Decrypt m = Dk(Ek(m))

Generate KsA, KpA

Generate k

What is the solution?

Could Alice and Bob could magically come up with a key without
exchanging it over the network?

➡ The magic is called Diffie-Hellman-Merkle Protocol

K = gab mod p = (ga mod p)b mod p = (gb mod p)a mod p

p,g p,g

a b

A = ga mod p B = gb mod p

K = Ba mod p K = Ab mod p

The Diffie-Hellman-Merkel key exchange protocol

The Diffie-Hellman-Merkel key exchange protocol

A, p, g

B

1. Generates public numbers p and g
such that g if co-prime to p-1

2. Generates a secret number a
3. Sends A = ga mod p to Bob

1. Generates a secret number b
2. Sends B = gb mod p back to Alice
3. Calculates the key K = Ab mod p

4. Calculates the key K = Ba mod p

Diffie-Hellman-Merkle in practice

• g is small (either 3, 5 or 7 and fixed in practice)
• p is at least 2048 bits (and fixed in practice)
• private keys a and b are 2048 bits as well
➡ So the public values A and B

and the master key k are 2048 bits
➡ Use k to derive an AES key using a Key Derivation Function

(usually HKDF - the HMAC-based Extract-and-Expand key derivation function)

Elliptic Curve Diffie-Hellman-Merkle (ECDH)

➡ Generate a symmetric key k from two distinct asymmetric
key pairs: KpA, KsA and KpB, KsB

k = ECDH(KsA, KpB) = ECDH(KsB, KpA)

ECDH Key exchange

KpB, Ek(m)

KpA

1. Derive k = ECDH(KsA, KpB)
2. Decrypt m = Dk(Ek(m))

1. Generate KsB, KpB
2. Derive k = ECDH(KsB, KpA)

Diffie-Hellman-Merkle provides a way to generate a shared key
from two asymmetric key pairs
ECDH(KsA, KpB) = ECDH(KsB, KpA) = k
✓ Mutual contribution to the key generation
✓ No need to send the encrypted shared key

Generate KsA, KpA

A widely used key exchange protocol

ECDH is in many protocols
• SSH
• TLS (used by HTTPS)
• Signal (used by most messaging apps like Whatsapp)
• and so on . . .

✓ It is fast and requires two exchanges only

๏ But how to make sure Alice is talking to Bob and vice-versa?
Diffie-Hellman-Merkle alone does not ensure
authentication

Are we done yet?

✓ Encryption and key exchange protects against confidentiality ...

๏ ... but not does not protect integrity

KpM, Ek2(m)

KpA KpM

KpB, Ek1(m)

