Classical Cryptography

Thierry Sans

Example and definitions of a cryptosystem

#### Caesar Cipher - the oldest cryptosystem

A shift cipher – attributed to Julius Caesar (100-44 BC) MEET ME AFTER THE TOGA PARTY PHHW PH DIWHU WKH WRJD SDUWB

Shift the alphabet 23 places to the right and substitute letters a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

#### Communication over an **insecure** medium



### Threat I - Interception



• Interception : an attacker can <u>read</u> messages

# Threat 2 - Modification



Modification : an attacker can modify messages

## Threat 3 - Fabrication



• Fabrication : an attacker can inject messages

#### Threat 4 - Interruption



Interruption : an attacker can <u>block</u> messages

#### Confidentiality and Integrity of communications



Implement a virtual trusted channel over an insecure medium

# Definitions

#### Plaintext

The message in its clear form (the original message)

#### Ciphertext

The message in its ciphered form (the encrypted message)

#### Encryption

Transform a plaintext into ciphertext

#### Decryption

Transform a ciphertext into a plaintext

# Definitions

#### Cryptographic algorithm

The method to do encryption and decryption

#### Cryptographic key

An input variable used by the algorithm for the transformation

**N-bit security entropy** (a.k.a. the key space) The number of bits necessary to <u>encode the number of</u> <u>possible keys</u> (could be different than the key length)

#### Representing data as numbers

Cryptographic algorithms are mathematical operations

 messages and keys must be represented as numbers for instance : ASCII encoding

#### Back to Caesar Cipher

Algorithm : shift the alphabet of a certain number of positions
Key : the number of positions to shift
Key space : 25 possible rotations (~ 5 bits security)
Encoding :
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Encrypting and decrypting one character is obtained as follows:

 $c = E(k,p) = (p + k) \mod 26$  $p = D(k,c) = (c - k) \mod 26$ 

# The big picture



Breaking the cipher

#### The Kerckhoffs' principle (1883)

"The enemy knows the system" - the security of a communication should not rely on the fact that the algorithms are secrets

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge

#### No security by obscurity

#### Breaking the cipher - the attacker's model

- **Exhaustive Search** (a.k.a brute force) Try all possible n keys (in average it takes n/2 tries)
- Ciphertext only
   You know one or several <u>random ciphertexts</u>
- Known plaintext You know one or several pairs of <u>random plaintext</u> and their corresponding ciphertexts

#### Chosen plaintext

You know one or several pairs of chosen plaintext and their corresponding ciphertexts

#### Chosen ciphertext

You know one or several pairs of plaintext and their corresponding chosen ciphertexts

#### A good crypto system resists all attacks

# Breaking Caesar cipher

| Exhaustive search | Yes                                        |
|-------------------|--------------------------------------------|
| ciphertext only   | Statistical Analysis                       |
| known plaintext   | Look at the first letter and get the shift |
| chosen plaintext  | Choose ''A'' and get the shift             |
| chosen ciphertext | Choose ''A'' and get the shift             |

Statistical Cryptanalysis

 Monoalphabetic ciphers do not change the relative frequency of letters in a message

# Evolution of cryptosystems

# Substitution ciphers (a.k.a mono alphabetic ciphers)

➡ Improvement over Caesar cipher

**Algorithm :** allow an arbitrary permutation of the alphabet

**Key :** set of substitutions

**Key space :** 26! possible substitutions ( $4 \times 10^{26} \sim 89$  bits)

a b c d e f g h i j k l m n o p q r s t u v w x y z D K V Q F I B J W P E S C X H T M Y A U O L R G Z N

if we wish to replace letters
WI RF RWAJ UH YFTSDVF SFUUFYA

# Breaking substitution ciphers

| Exhaustive search | Doable with a computer         |
|-------------------|--------------------------------|
| ciphertext only   | Statistical analysis           |
| known plaintext   | Match letters together         |
| chosen plaintext  | Choose ABCDE and match letters |
| chosen ciphertext | Choose ABCDE and match letters |

## Polyalphabetic ciphers (a.k.a Renaissance Cipher)

➡ Vigenere cipher

Algorithm : combine the message and the key

Key: a word

**Key space :** 26<sup>n</sup> (n being the length of the key)

wearediscoveredsaveyourself

+ deceptivedeceptivedeceptive (mod 26)

ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Advantage : Encryption of a letter is context dependent

# Breaking Polyalphabetic Ciphers

| exhaustive search | Small key length only                                                          |
|-------------------|--------------------------------------------------------------------------------|
| ciphertext only   | Statistical analysis for small key length and significant amount of ciphertext |
| known plaintext   | Subtract plaintext from ciphertext                                             |
| chosen plaintext  | Choose AAAAA and match letters                                                 |
| chosen ciphertext | Choose AAAAA and match letters                                                 |

#### OTP - One Time Pad

➡ Improvement over Vigenere cipher

Algorithm : combine the message and the key

**Key :** an infinite random string

**Key space :** 26<sup>n</sup> (n being the length of the plaintext)

whatanicedaytoday
yksuftgoarfwpfwel

ZZZJUCLUDTUNNWGQS

Advantage : this is the perfect cipher !

**Disadvantage :** hard to use in practice, how to transmit the key?

# The impossibility of breaking OTP

The ciphertext bears no statistical relationship to the plaintext

➡ No statistical analysis

For any plaintext and ciphertext, there exists a key mapping one to the other, and all keys are equally probable

A ciphertext can be decrypted to any plaintext of the same length

```
Transposition Cipher
```

Algorithm : switch letters around a permutationKey : a set of permutationKey space : the set of permutations

helloworld LOLHERDLWO

# Breaking Transposition ciphers

| brute force       | Small key length only          |
|-------------------|--------------------------------|
| ciphertext only   | Hard for large permutations    |
| known plaintext   | Match letters together         |
| chosen plaintext  | Choose ABCDE and match letters |
| chosen ciphertext | Choose ABCDE and match letters |

# The seeds of modern cryptography

#### Diffusion

Mix-up symbols Transposition Cipher

#### 2. Confusion

Replace a symbol with another Polyaphabetic Cipher

#### 3. Randomization

Repeated encryption of the same text are different OTP

# A brief history

| ~ 2000 years ago    | Substitution ciphers<br>(a.k.a mono alphabetic ciphers) |
|---------------------|---------------------------------------------------------|
| Few Centuries Later | Transposition Ciphers                                   |
| Renaissance         | Polyalphabetic Ciphers                                  |
| 1844                | Invention of the Telegraph                              |
| 1882                | One Time Pad                                            |
| 1939                | World War II<br>The Enigma Machine                      |
| 1970                | Data Encryption Standard (DES)                          |
| 1976                | Public Key Cryptography (RSA)                           |