
Mobile Systems

Thierry Sans



History of mobile OSes

➡ Early "smart" devices are PDAs (touchscreen, Internet)

Symbian, first modern mobile OS
• released in 2000
• run in Ericsson R380, the first "smartphone" 

(mobile phone + PDA)
• only support proprietary programs



History of mobile OSes

Many smartphone and mobile OSes followed up
• Palm OS (2001)
• Windows CE (2002)
• Blackberry (2002)



One more thing …

Introduction of iPhone (2007) 
• 4GB flash memory, 128 MB DRAM, multi-touch interface
• runs iOS only proprietary apps at first but App Store 

opened in 2008, allow third party apps



Android – an unexpected rival of the iPhone

Android Inc. founded by Andy Rubin et al. in 2003
• original goal is to develop an OS for digital camera
• shift focus on Android as a mobile OS

The startup had a rough time [story]
• run out of cash, landlord threatens to kick them out
• later bought by Google
• no carrier wants to support it except for T-Mobile
• while preparing public launch of Android, iPhone was released

Android 1.0 released in 2008 (HTC G1)
• In 2023, ~70% of mobile OS market (iOS ~13%)

https://www.businessinsider.com/how-android-was-created-2015-3


Why are mobile OSes interesting?

Now an essential device part of people’s daily life 
(sometimes the only computing device)

➡ Mobile OSes and traditional OSes share the same core 
abstractions ... but also have many unique designs



Design considerations for mobile OS

Resources are very constrained
• Limited memory
• Limited storage
• Limited battery life
• Limited processing power
• Limited network bandwidth
• Limited size

➡ User perception are important: Latency ≫ throughput 
Users will be frustrated if an app takes several seconds to launch

➡ Environment are frequently changing 
Cellular signals from strong to weak and then back to strong



Process management in mobile OS

In desktop/server - an application = a process

Not true in mobile OSes
• When running app foreground 

it does not mean an actual process is running
• Multiple apps might share processes
• An app might make use of multiple processes
• When you "close" an app, the process might be still running

➡ Different user-application interaction patterns



Process management in mobile OS

Multitasking is a luxury in mobile OS
• Early versions of iOS did not allow multi-tasking 

mainly because of battery life and limited memory
• Only one app runs in the foreground, all other user apps are 

suspended
• OS's tasks are multi-tasked because they are assumed to be 

well-behaving
➡ Starting with iOS 4, the OS APIs allow multi-tasking in apps 

but only available for a limited number of app types



Memory management in mobile OS

Most desktop and server OSes today support swap space

Mobile OSes typically do not support swapping
• iOS asks applications to voluntarily relinquish allocated 

memory
• Android will terminate an app when free memory is 

running low

➡ App developers must be very careful about memory usage



Storage in mobile OS 

App privacy and security is hugely important in mobile device
• Each app has its own private directory that other apps cannot 

access
• Only shared storage is external storage

High-level abstractions
• Files
• Database (SQLite)
• Preferences (key-value pairs)



Android OS stack



Linux kernel vs. Android kernel

➡ Linux kernel is the foundation of Android platform

New core code
• binder - interprocess communication mechanism
• shmem - shared memory mechanism
• logger

Performance/power
• wakelock
• low-memory killer
• CPU frequency governor

➡ and much more . . . 361 Android patches for the kernel



Android runtime

➡ Runtime - a component provides functionality necessary for the execution of a program 
E.g., scheduling, resource management, stack behavior

Prior to Android 5.0 - Dalvik
• Each Android app has its own process, runs its own instance of the Dalvik virtual 

machine (process virtual machine)
• The VM executes the Dalvik executable (.dex) format
• Register-based compared to stack-based of JVM

After Android 5.0 - ART
• Backward compatible for running Dex bytecode
• New feature - Ahead-Of-Time (AOT) compilation
• Improved garbage collection



Java API framework

The main Android OS from app point of view
• Provide high-level services and environment to apps
• Interact with low-level libraries and Linux kernel

Some components
• Activity Manager - manages the lifecycle of apps
• Package Manager - keeps track of apps installed
• Power Manager - wakelock APIs to apps



Native C/C++ libraries

Many core Android services are built from native code
• Require native libraries written in C/C++
• Some of them are exposed through the Java API 

framework as native APIs e.g. Java OpenGL API

➡ Technique: JNI – Java Native Interface 
app developer can use Android NDK to include C/C++ 
code (common in gaming apps)



Some other interesting topics in mobile OSes

• Energy management

• Dealing with misbehaving apps

• Security



Summary

➡ Smartphone has become an ubiquitous computing device

Mobile OS is an interesting and challenging subject
• Constrained resources
• Different user interaction patterns
• Frequently changing environment
• Untrusted, immature third-party apps

Some unique design choices
• Application ≠ process
• Multitasking
• No swap space
• Private storage



Acknowledgments

Some of the course materials and projects are from

• Ryan Huang - teaching CS 318 at John Hopkins University

• David Mazière - teaching CS 140 at Stanford


