Distributed Systems

Thierry Sans

What Is a distributed system!?

= (Cooperating processes In a computer network

®
computer ®
O computer O

process
network link
—> message

computer com.puter
=

"A distributed system Is one where | can't do work because some
machine I've never heard of isn't working!" Leslie Lamport

Popular distributed systems today:
Google file systems, Big lable, MapReduce, Hadoop, ZooKeeper, etc.

Forms & models of distributed systems!

Degree of integration

- Loosely-coupled
internet applications (e.g emall, web, FTF SSH)

* Mediumly-coupled
femele execution (€. RPC), remote Tile systEmEEIcHiE

- Tightly-coupled
SlEisireaiiile sysiems (.9. AFS)

major functions
performed by a
single physical
computer

physically separate
computers working
together on some task

Client/Server Model Cluster/Peer-to-Peer Model

Why distributed systems!?

Why do we want distributed systems!

Performance - parall

elism across multiple nodes

Scalablility - by adding more nodes

Reliability - leverage

redundancy to provide fault tolerance

Cost - cheaper and easier to build lots of simple computers

@@= Users can

@6 Poation - muc
network resources

nave complete control over some components

n easler for users to collaborate through

The promise of distributed systems

The promise of distributed systems
- Higher avallability - one machine goes down, use another
- Better durabllity - store data in multiple locations

B NIGre securty - each piece easier 1o make secure

The reality of distributed systems

Reality has been disappointing
- Worse avallabllity - depend on every machine being up
» Worse reliability - can lose data it any machine crashes
* Worse security - anyone In world can break into system

@ Coordination 1s more difficult - must coordinate multiple
coples of shared state information (using only a network)

Requirements

Transparency - the ability of the system to mask its complexity behind a simple interface

Possible transparencies
 Location - cannot tell where resources are located
« Migration - resources may move without the user knowing
 Replication - cannot tell how many copies of resource exist
« Concurrency - cannot tell how many users there are
* Parallelism - may speed up large jobs by splitting them into smaller pieces
* Fault Tolerance - system may hide various things that go wrong

= [ransparency and collaboration require some way for different processors to
communicate with one another

Clients and Servers

The prevalent model for structuring distributed computation is the client/server paradigm

= A server is a program (or collection of programs) that provide a service (file server,
name service, etc.)

Eler e er ey exist on one or more nodes

 Often the node is called the server, too, which Is confusing
= A client is a program that uses the service

A client first binds to the server (locates it and establishes a connection to It)

A client then sends requests, with data, to perform actions, and the servers sends
responses, also with data

computer

computer
Naming

computer

ow to refer to a node In a distributed system!?
—ssentially naming systems in network

» Address processes/ports within system (host, id) pair

* Physical network address (Ethernet address)
» Network address (Internet |IP address)

» Domain Name Service (DNS) provides resolution of
canonical names to network address

computer

@S mlinication

computer computer

How can one computer communicate with another?

» Raw Message - UDP
» Reliable Message - TCP

B mieie Procedure Call (RPC)
and Remote Method Invocation(RMI)

Raw messaging

= Network programming = raw messaging (socket |/O)
programmers hand-coded messages to send requests and responses

@ loo low-level and tiresome
« Need to worry about message formats
« Must wrap up information into message at source
« Must decide what to do with message at destination
« Have to pack and unpack data from messages

« May need to sit and wait for multiple messages to arrive

Messages are not a very natural programming model
« Could encapsulate messaging into a library

* Just invoke library routines to send a message
* Which leads us to RPC...

Reeacdlre calls

Procedure calls are a more natural way to communicate
 Every language supports them
 Semantics are well-defined and understood

 Natural for programmers to use

= |dea - let servers export procedures that can be called by client programs
 Similar to module interfaces, class definrtions, etc.
» Clients just do a procedure call as it they were directly linked with the server

« Under the covers, the procedure call Is converted into a message exchange
with the server

Remote Procedure Calls (RPC)

S0, we would like to use procedure call as a model for distributed
(remote) communication

Lots of issues
* How do we make this invisible to the programmer?
* What are the semantics of parameter passing!

» How do we bind (locate, connect to) servers!

» How do we support heterogenerty (OS, arch, language)?

* How do we make 1t perform well?

Why i1s RPC interesting?

Remote Procedure Call (RPC) is the most common
means for remote communication

[t Is used both by operating systems and applications
e CORBA, Java RMI, etc., are all basicallyfjUsSiBisisE
RN mplemented as a set of RPCs

= Someday you will most likely have to write an application that
uses some form of RPC for remote communication (or you
already have)

RPC example

Server Interface:

int Add(int x, int y);

Client Program:

sum = server->Add(3,4); Server Program:

int Add(int x, int y) {

return x + y;

}

RPC model

= A server defines the server’s interface using an Interface Definition Language (IDL)
that specifies the names, parameters, and types for all client-callable server
procedures

A stub compiler reads the IDL and produces two stub procedures for each server
procedure (client and server)

* Server programmer implements the server procedures and links them with
server-side stubs

 Client programmer implements the client program and links it with client-side
Stubs

= [he stubs are the “glues” responsible for managing all detalls of the remote
communication between client and server

RPC information flow

marshal
args
: call . send
Client = Client |——— Packet
(caller) Stub , Handler
return recelve :

*v

unmarshal mbo
Machine A ret vals
Machine B marshal

ret vals 2

Server Packet
Stub Handler

receive

unmarshal
args

BIRE@ <tUbsS

EEIGIERTlios sena messages to each other to make RiRE
happen transparently

* A client-side stub packs message, send it off, walt for result,
unpack result and return to caller

* A server-side stub unpack message, call procedure, pack
results, send them off

RPC marshalling

Marshalling is the packing of procedure parameters into a message packet

The RPC stubs call type-specific procedures to marshal (or unmarshal) the
parameters to a call

 The client stub marshals the parameters into a message

 The server stub unmarshals parameters from the message and uses them to
call the server procedure

On return
 The server stub marshals the return parameters

* The client stub unmarshals return parameters and returns them to the client
progra

RPC example - call

Client Program:

sum = server->Add(3,4);

Client Stub:

int Add(int x, int y) {
Alloc message buffer;
Mark as “Add” call;
Store x, y into buffer;
Create, send message;

RPC Runtime:

Send message to server;

Server Program:

int Add(int x, int y){
return x + y;

Server Stub:

Add Stub(Message) {

Remove x, y from buffer
r = Add(x, Y);

RPC Runtime:

—

Receive message;
Dispatch, call Add Stub;

network

RPC example - return

Client Program:

sum = server->Add(3,4);

Client Stub:

int Add(int x, int y) {
Alloc message buffer;
Mark as “Add” call;
Store x, y into buffer;
Create, send message;
Remove r from reply;
return r;

}

Server Program:

int Add(int x, int y){
return x + y;

Server Stub:

Add Stub(Message) {
Remove x, y from buffer
r = Add(x, Y);
Store r in buffer;

}

network

RPC Runtime: ‘

Return reply to stub;

RPC Runtime:

Send reply to client;

RPC implementation detalls

What if client/server machines are different architectures

and/or languages?
Need to convert everything to/from some canonical form and tag every item
with an indication of how It Is encoded (avoids unnecessary conversions)

= Abstract Syntax Notation One (ASN.)
How does client know which server to send to?
Need to translate name of remote service into network endpoint (IR port)

= Binding - the process of converting a user-visible name into a network
endpoint

» Static - fixed at compile time

* Dynamic - performed at runtime

RPC transparency

One goal of RPC is to be as transparent as possible

= Make remote procedure calls look like local procedure call
although binding can break transparency

VWhat else!?

» Fallures — remote nodes/networks can fall In more ways
than with local procedure calls

* Performance — remote communication is inherently slower
than local communication

RPC fallure semantic - at-least-once

What does a failure look like to the client RPC library?

» Client never sees a response from the server

» Client does not know whether the server processed the request

Simplest scheme - at=-least-once behavior

» RPC library wailts for response for time I, If none arrives, re-send
the request

» Possibly repeat this a few times

» It still no response then return an error to the application

RPC fallure semantic - at-most-once

® Problem with at-least-once behavior
What if the request is "deduct $100 from bank account” ?

= At-least-once works well with Idempotent requests

Another (better) RPC behavior - at=-most-once

= Having Server RPC code detects duplicate requests returns previous reply instead
of re-running handler

» How to detect a duplicate request!

 Client includes unique ID (XID) with each request, and uses the same XID for
re-send

* Server checks an incoming XID in a table, if an entry is found, directly returns
the reply

Problems with RPC - performance

Cost of Procedure Call « same-machine RPC « network RPC

= Means programmers must be aware that RPC is not free

RPC summary

RPC Is the most common model for communication In
distributed applications

* Some popular libraries such as gRPC

* "Cloaked" as DCOM, CORBA, |ava RM|, etc.

= RPC Is essentially language support for distributed
Drogramming

Acknowledgments

Some of the course materials and projects are from
* Ryan Huang - teaching CS 318 at John Hopkins University

* David Maziere - teaching CS 140 at Stanford

