/O and Disks

Thierry Sans

/O management

%

® » S

* /O devices vary greatly
and new types of I/O devices appear frequently

B HIeLs merhods to control them
and to manage thelir performances

= Ports, buses, device controllers connect to various devices

/O Device Interfaces

Port - connection point for device (e.g. serial port)

Bus - daisy chain or shared direct access
e.g. Peripheral Component Interconnect Bus (PCl)
e.g Universal Serial Bus (USB)

Controller (host adapter) - electronics that operate port, bus, device
(e.g Northbridge, Southbridge, sraphics controller, DMA, NIC, ...)

 (Can be Integrated or separated (host adapter)

» Contains processor, microcode, private memory, bus controller, etc

/O architecture

Graphics
card slot

Clock SRR 'l Front-side
Generator B

Chipset

- —— —————— v o e -

Memory Slots

High-speed
graphics bus

(AGRoRhC] Northbridge [

Express) bus

(memory
controller hub)

Internal
Bus

Southbridge

(I/0O controller
hub)
IDE
SATA
USB Cables and

Au d;fotiéeor g g (l; ports leading

CMOS Memory off-board

PCLSlots <.f .r i S1o S it ar o B S S

Super 1/O

Serial Port
Parallel Port

Flash ROM Floppy Disk

(8109 KErboard

How the OS communicates with the device!

= Fach device has three types of registers
and the OS controls the device by reading or writing these registers

status register
See the current status of the device

command register (also called control register)
Tell the device to perform a certain task

data register
Pass data to the device, or get data from the device

Two ways to read/write those registers

1/0 ports
in and out Instructions on x86 to read and write devices

registers

Memory-mapped 1/0
Device registers are avallable as if they were memory locations

and the OS can 1load (to read) or store (to write) to the
device

@ Roris on PC

|/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3FO0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Reading/Writing to I/O ports

Pintos thread=r SR

static inline uint8 t inb (uintlé t port)
{
uint8 t data;

asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void outb (uintlé t port, uint8 t data)

{
asm volatile ("outb %b0, %wl" : : "a" (data), "Nd" (port));

}

Device driver

while (STATUS == BUSY)

; //wait until device is not busy

write data to data register
write command to command register

Doing so starts the device and executes the command

while (STATUS == BUSY)

; //wait until device is done with your request

—xample : parallel port (LPT)

EEfifee registers

D, | D¢ | Ds | Do | D3 | D, | D; | Dg
read/write data register (port 0x378)
BSY | ACK | PAP |[OFON| ERR - - -
read-only status register (port 0x379)
- - - IRQ | DSL | INI | ALF | STR

read/write control register (port 0x37a)

BRE iR Abits (except IRQ) corresponds to a pin

on 25-pin connector

Ground

25—
24—
231|—@
22—
21—
201—@
19—
181—.
SELIN174¢—9@
INIT 164—@
ERROR 15, —&@
AUTOF 144—@

.__
.__

>

ACK

7

§)
5
4
3
2
1
0

13 SEL (Select)
12 PE (Paper End)
® —«11BUSY

L 1\0
e —»9
e —» 8
[e
e —»06
e —»5
> 4
> 3
> 2
-

Data Out

STROBE

Parallel Port

De

Ds

D4

Ds

D,

D,

rea

/write data register (port 0x378)

BSY

ACK

PAP

OFON

ERR

Dl

read-only status register (port 0x379)

IRQ

DSL

INI

ALF

STR

void
sendbyte (uint8_t byte)

{

/* Wait until BSY bit is 1.
while ((inb (0x379) & 0x80)
delay Q);

/* Put the byte we wish to send on pins D7-0. */

outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer

* that a byte is available */
uint8_t ctrlval = inb (0x37a);
outb (0x37a, ctrlval | 0x01);
delay ();
outb (0x37a, ctrlval);

read/write control register (port 0x37a)

Polling

= OS5 walts until the device is ready by repeatedly reading the
status register

v Simple and working

® Wastes CPU time just wairting for the device

task 1 | P | : polling

"waiting 10" 1

U 11111111 {plplPlP|P|1T|T1T|1T]1]1

Disk 111111111

Diagram of CPU utilization by polling

Interrupts

IEEEC(O request process to sleep and switchreOnRiiE

2. When the device Is finished, send an interrupt to wake the
process waiting for the /O

v CPU is properly utilized

1 | : task 1 2 | :task 2

CPU 1111111122222 (1|11 |1]1

Disk 1111111

Diagram of CPU utilization by interrupt

Polling vs Interrupts

= Interrupts is not always the best solution
If, device performs very quickly, interrupt will slow down the system

E.g. high network packet arrival rate
* Packets can arrive faster than OS can process them
* Interrupts are very expensive (context switch)

* Interrupt handlers have high priority

* In worst case, can spend [00% of time In interrupt handler and
never make any progress a.k.a receive livelock

v Best - adaptive switching between interrupts and polling

One More Problem : Data Copying

@ CPU wastes a lot of time In copying a large chunk of data
from memory to the device

“over-burdened” 1 | :task 1 2 | :task 2

. copy data from memory

@)

o

CPU 11T (1 (1]1|]C|C|C|2(2|2|2[2|1]|1]1

Disk 11111111

Diagram of CPU utilization

DMA (Direct Memory Access)

= Only use CPU to transfer control requests, not data, by
passing buffer locations iIn memory

» Device reads list and accesses buffers through DMA

 Descriptions sometimes allow for scatter/gather /O

Memory buffers

Buffer descriptor list

DMA (Direct Memory Access)

|, OS writes DMA command block into memory

2. DMA bypasses CPU to transfer data directly between /O
device and memory

3. When completed, DMA raises an interrupt

- task 1 2 | :task 2

C | : copy data from memory

CPU 11 (111122222222 |1]|1]1

DMA Cl|C]|C

Disk 1111111

Diagram of CPU utilization by DMA

—xample : IDE disk read with DMA

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untiiC =0 OMAuS
us
6. when C = 0, DMA : = X
interrupts CPU to signa clzgtnet:gflpetr + CPU memory bus —| memory | buffer
transfer completion
4 PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller | 4. disk controller sends
each byte to DMA

@ @ controller
SIS

/O Instruction using DMA

Pintos threads SEcEs

static inline void insw (uintlé t port, void *addr, size t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");

sz [DiEviEl s

—xample : 1D

void IDE_ReadSector (int disk, int off, void x*buf)
{
outb(0x1F6, disk == 0 ? OxEO : 0xFO); // Select Drive
IDEWait () ;
outb(0x1F2, 1); // Read length (1 sector = 512 B)
outb(0x1F3, off); // LBA low
outb (0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) !'= 0)

b

-xample : Network Interface Cara

-~ ' Network link

Host I/0 bus

Adaptor

» Link interface talks to wire/fiber/antenna
* FIFOs on card provide small amount of buffering

» Bus Interface logic uses DMA to move packets to and from
buffers In main memory

Variety Is a challenge

® Problem :there are many devices and each has its own protocol

» Some devices are accessed by /O ports or memory mapping or both

« Some devices can interact by polling or interrupt or both

* Some device can transfer data by programmed |/O or DMA or both

v Solution : abstraction
* Build a common interface
« Write device driver for each device

S s are /0% of Linux source code

Flle System Abstraction

» File system specifics of which disk class it 1s using
t I1ssues block read and write request to the generic block
ayer

Application user

: kernel
File System srne
[Generic Block Interface [block read/write]]
Generic Block Layer
[Specific Block Interface [protocol-specific read/write]]
Device Driver [SCSI, ATA, etc] The File System Stack

Hard Drive

Disks

Disk Platters

Head Arm

Hard Disk Drive (HDD)

Platter (aluminum coated with a thin magnetic layer)
A circular hard surface
« Data Is stored persistently by inducing magnetic changes to it

 Each platter has 2 sides, each of which is called a surface

= Read and Write Head
Spindle (Each disk platter has its own head)
« Spindle is connected to a motor that spins the platters Inside Hard Disk
around
* The rate of rotations is measured in RPM |
(Rotations Per Minute) track t «— spindle
Typical modern values : /7,200 RPM to 15,000 RPM
- >|/(p F >
rac s «— arm assembly
S ChEEnnIc cicles of sectors sector s | |
: s G |
« Data is encoded on each surface in a track B o | e =
* A single surface contains many thousands and thousands of ! |
| |
traC|<S Cy“nder c _,II i read-write
. | head
Cylinder gl | ea
A stack of tracks of fixed radius S
« Heads record and sense data along cylinders platter
 Generally only one head active at a time J o

rotation

image source: https:/blogs.umass.edu/Techbytes/20 | //04/04/hard-drives-how-do-they-work/

https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/

HDD Interface

Actuator Arm

= Disk interface presents linear array of sectors

» Historically 512 Bytes but 4 KiB in "advanced format" disks

* Whritten atomically (even If there I1s a power fallure)
v Disk maps logical sector #s to physical sectors

v OS doesn’t know logical to physical sector mapping

image source: https:./blogs.umass.edu/Techbytes/20 | //04/04/hard-drives-how-do-they-work/

https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/

Seek, Rotate, [ransfer

Seek - move head to above specific track
|. speedup — accelerate arm to max speed
coast — at max speed (for long seeks)

slowdown — stops arm near destination

T

settle — adjusts head to actual desired track

® Seeks Is slow
g e iihe alone can take 0.5 to Zms

e entire seek often takes 4 - |0 ms

Seek, Rotate, [ransfer

Rotate disk until the head Is above the right sector

= Depends on rotations per minute (RPM)
With typical 7200 RPM 1t takes 8.3 ms / rotation

@ Average rotation is slow (4.15 ms)

Seek, Rotate, Transfer

Data Is either read from or written to the surface.

mRbCbends on RPM and sector density
With typical |00+ MB/s 1t takes Sus / sector (512 bytes)

ettty Fast

VWorkload

Sieln
* seeks are slow
* rotations are slow

seSliransiers are fast

What kind of workload Is fastest for disks?
+ Sequential : access sectors in order (transfer dominated)
« Random :access sectors arbitrarily (seek+rotation dominated)
= Disk Scheduler decides which I/O request to schedule next
RisR@eriestitst Scrved (FCFS)

ElielRiesi SeeicTime First (SSTF)
Elevator Scheduling (SCAN) commonly used on Unix

Solid State Drive (SSD)

= Completely solid state (no moving parts), remembers data by storing charge (like RAM)
v Same interface as HDD (linear array of sectors)

v No mechanical seek and rotation times to worry about (SSD are way faster than HDD)
v Lower power consumption and heat (better for mobile devices)

® More expensive than HDD vyet (but getting cheaper)

@ Limited durability as charge wears out over time (but improving)

@ Limited # overwrites possible
 Blocks wear out after 10,000 (MLC) — 100,000 (SLC) erases

+ Requires Flash Translation Layer (FTL) to provide wear levelling, so repeated writes to logical block
don't wear out physical block

» FTL can seriously impact performance

