
I/O and Disks

Thierry Sans

I/O

I/O management

• I/O devices vary greatly
and new types of I/O devices appear frequently

• Various methods to control them
and to manage their performances

➡ Ports, buses, device controllers connect to various devices

I/O Device Interfaces

Port - connection point for device (e.g. serial port)

Bus - daisy chain or shared direct access
e.g. Peripheral Component Interconnect Bus (PCI)
e.g Universal Serial Bus (USB)

Controller (host adapter) - electronics that operate port, bus, device
(e.g Northbridge, Southbridge, graphics controller, DMA, NIC, ...)

• Can be integrated or separated (host adapter)
• Contains processor, microcode, private memory, bus controller, etc

I/O architecture

How the OS communicates with the device?

➡ Each device has three types of registers
and the OS controls the device by reading or writing these registers

status register
See the current status of the device

command register (also called control register)
Tell the device to perform a certain task

data register
Pass data to the device, or get data from the device

Two ways to read/write those registers

I/O ports
in and out instructions on x86 to read and write devices
registers
Memory-mapped I/O
Device registers are available as if they were memory locations
and the OS can load (to read) or store (to write) to the
device

I/O Ports on PC

Reading/Writing to I/O ports

Pintos threads/io.h

Device driver

Example : parallel port (LPT1)

• Three registers

• Every bits (except IRQ) corresponds to a pin
on 25-pin connector

Parallel Port Driver

Polling

➡ OS waits until the device is ready by repeatedly reading the
status register

✓ Simple and working
๏ Wastes CPU time just waiting for the device

Interrupts

1. Put the I/O request process to sleep and switch context
2. When the device is finished, send an interrupt to wake the

process waiting for the I/O
✓ CPU is properly utilized

Polling vs Interrupts

➡ Interrupts is not always the best solution
If, device performs very quickly, interrupt will slow down the system

E.g. high network packet arrival rate
• Packets can arrive faster than OS can process them
• Interrupts are very expensive (context switch)
• Interrupt handlers have high priority
• In worst case, can spend 100% of time in interrupt handler and

never make any progress a.k.a receive livelock

✓ Best - adaptive switching between interrupts and polling

One More Problem : Data Copying

๏ CPU wastes a lot of time in copying a large chunk of data
from memory to the device

DMA (Direct Memory Access)
➡ Only use CPU to transfer control requests, not data, by

passing buffer locations in memory
• Device reads list and accesses buffers through DMA
• Descriptions sometimes allow for scatter/gather I/O

DMA (Direct Memory Access)
1. OS writes DMA command block into memory
2. DMA bypasses CPU to transfer data directly between I/O

device and memory
3. When completed, DMA raises an interrupt

Example : IDE disk read with DMA

I/O instruction using DMA

Pintos threads/io.h

Example : IDE Disk Driver

Example : Network Interface Card

• Link interface talks to wire/fiber/antenna

• FIFOs on card provide small amount of buffering

• Bus interface logic uses DMA to move packets to and from
buffers in main memory

Variety is a challenge

๏ Problem : there are many devices and each has its own protocol
• Some devices are accessed by I/O ports or memory mapping or both
• Some devices can interact by polling or interrupt or both
• Some device can transfer data by programmed I/O or DMA or both

✓ Solution : abstraction
• Build a common interface
• Write device driver for each device

➡ Drivers are 70% of Linux source code

File System Abstraction
• File system specifics of which disk class it is using

It issues block read and write request to the generic block
layer

Disks

Hard Disk Drive (HDD)

Platter (aluminum coated with a thin magnetic layer)
• A circular hard surface
• Data is stored persistently by inducing magnetic changes to it
• Each platter has 2 sides, each of which is called a surface

Spindle
• Spindle is connected to a motor that spins the platters

around
• The rate of rotations is measured in RPM

(Rotations Per Minute)
Typical modern values : 7,200 RPM to 15,000 RPM

Track
• Concentric circles of sectors
• Data is encoded on each surface in a track
• A single surface contains many thousands and thousands of

tracks
Cylinder

• A stack of tracks of fixed radius
• Heads record and sense data along cylinders
• Generally only one head active at a time

image source: https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/

https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/

HDD Interface

➡ Disk interface presents linear array of sectors
• Historically 512 Bytes but 4 KiB in "advanced format" disks
• Written atomically (even if there is a power failure)

✓ Disk maps logical sector #s to physical sectors

✓ OS doesn’t know logical to physical sector mapping

image source: https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/

https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/

Seek, Rotate, Transfer

Seek - move head to above specific track
1. speedup – accelerate arm to max speed
2. coast – at max speed (for long seeks)
3. slowdown – stops arm near destination
4. settle – adjusts head to actual desired track

๏ Seeks is slow
• settling alone can take 0.5 to 2ms
• entire seek often takes 4 - 10 ms

Seek, Rotate, Transfer

Rotate disk until the head is above the right sector

➡ Depends on rotations per minute (RPM)
With typical 7200 RPM it takes 8.3 ms / rotation

๏ Average rotation is slow (4.15 ms)

Seek, Rotate, Transfer

Data is either read from or written to the surface.

➡ Depends on RPM and sector density
With typical 100+ MB/s it takes 5µs / sector (512 bytes)

✓ Pretty Fast

Workload

So ...
• seeks are slow
• rotations are slow
• transfers are fast

What kind of workload is fastest for disks?
• Sequential : access sectors in order (transfer dominated)
• Random : access sectors arbitrarily (seek+rotation dominated)

➡ Disk Scheduler decides which I/O request to schedule next
• First Come First Served (FCFS)
• Shortest Seek Time First (SSTF)
• Elevator Scheduling (SCAN) commonly used on Unix

Solid State Drive (SSD)

➡ Completely solid state (no moving parts), remembers data by storing charge (like RAM)

✓ Same interface as HDD (linear array of sectors)

✓ No mechanical seek and rotation times to worry about (SSD are way faster than HDD)

✓ Lower power consumption and heat (better for mobile devices)

๏ More expensive than HDD yet (but getting cheaper)

๏ Limited durability as charge wears out over time (but improving)

๏ Limited # overwrites possible
• Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
• Requires Flash Translation Layer (FTL) to provide wear levelling, so repeated writes to logical block

don’t wear out physical block
• FTL can seriously impact performance

Acknowledgments

Some of the course materials and projects are from

• Ryan Huang - teaching CS 318 at John Hopkins University

• David Mazière - teaching CS 140 at Stanford

