
Virtual Memory

Thierry Sans

The problem of managing the memory

How to make programs and execution contexts co-
exists in memory?

✓ Placing multiple execution contexts (stack and heap)
at random locations in memory is not a problem ...
... well, as long as your have enough memory

๏ However having programs placed at random
locations is problematicprog A

stack A

heap A

prog B

stack B

heap B

(recap) Compiling and linking

• Compiler takes source code files and translates (binds)
symbolic addresses to logical, relocatable addresses within
compilation unit (object file)

• Linker takes collection of object files and translates
addresses to logical, absolute addresses within executable
(resolves references to symbols defined in other files/
modules)

Let's look at some C code and its binary

Since function addresses and others
are hard-encoded in the binary, the
program cannot be placed at
random locations in memory

Naive Idea : load time linking

How about doing the linking when process executed, not at
compile time
➡ Determine where process will reside in memory and adjust

all references within program

๏ How to relocate the program in memory during execution?
(consider functions but also data pointers now)

๏ What if no contiguous free region fits program?
๏ How to avoid programs interfering with each others?

Issues in sharing physical memory

Transparency
• A process shouldn’t require particular physical memory bits
• A process often require large amounts of contiguous memory (for stack, large data

structures, etc.)

Resource exhaustion
• Programmers typically assume machine has “enough” memory
• Sum of sizes of all processes often greater than physical memory

Protection
• How to prevent A from even observing B’s memory
• How to prevent process A from corrupting B’s memory (whether it is intentional or not)

Virtual Memory Goals

• Provide a convenient abstraction for programming by giving
each program its own virtual address space

• Allow programs to see more memory than exists

• Allocate scarce memory resources among competing
processes to maximize performance with minimal overhead

• Enforce protection by preventing one process from messing
with another’s memory

Definitions

• Programs load/store to virtual addresses

• Actual memory uses physical addresses

• Virtual memory hardware is the MMU
(Memory Management Unit)
• Usually part of CPU and configured through privileged

instructions (e.g., load bound reg)
• Translates from virtual to physical addresses
• Gives per-process view of memory called address space

Virtual Memory in a nutshell

The application does not see physical memory addresses
➡ Memory-Management Unit (MMU) relocates each

load/store at runtime

Kernel

Program Space MMU

Virtual Memory Physical Memory

Virtual Address
0x30408

Is this address legal?

Yes, the physical
address is 0x92408

No, to fault handler

Virtual Memory Advantages

✓ Can re-locate process while running either in memory
or to disk (a.k.a swap)

Techniques for implementing virtual memory

• Basic address translation

• Segmentation (the old way)

• Paging (the new way)

Basic Address Translation

Base & Bound registers

Two special privileged registers : base and bound
On each load/store/jump

• Physical address = virtual address + base

• Check 0 ≤ virtual address < bound, else trap to kernel

✓ OS can change these registers to move the process in memory

✓ OS must re-load base these register on context switch

Base + Bound Trade-offs

Advantages

✓ Cheap in terms of hardware : only two registers

✓ Cheap in terms of cycles : do add and compare in parallel

Disadvantages

๏ Growing a process is expensive

๏ No way to share code or data

➡ Solution : segmentation i.e separate code, stack and data segments

Segmentation

Idea

Each process has a collection of multiple base/bound registers

➡ Address space is built from many segments
(a.k.a segmentation table)

✓ Can share/protect memory at segment granularity

text (code)

stack

data (heap)

Virtual Memory Physical Memory

Mechanics

Each virtual address indicates
• a segment index in the table (top bits)
• and an offset (low bits)

➡ x86 stores segment #s in registers (CS, DS, SS, ES, FS, GS)

base bound flag

0x1000 256 r

seg offset
3 128

Virtual Address

Segment Table

Physical Memory

<
128

0x1000

0x1080
0x1100

+
yes

no

Segmentation Trade-offs

Advantages
✓ Multiple segments per process (sparse memory)
✓ Can easily share memory
✓ Do not need entire process in memory (swap)

Disadvantages
๏ Requires translation, which could limit performance
๏ Makes external fragmentation a real problem

Physical Memory

unusable small space
(external fragmentation)

Fragmentation

Fragmentation is the inability to use free memory

➡ Over time
• External fragmentation

because of variables sized pieces (i.e many small holes)
• Internal fragmentation

because of fixed size pieces (i.e no external hole but
internal waste of space)

Paging
(Introduction)

Idea

➡ Divide memory up into fixed-size pages
to eliminate external fragmentation

Each process has a collection of maps from virtual pages to
physical pages
✓ Can share/protect memory at page granularity

Virtual Memory Physical Memory

page 0

page 1

page 2

page n

. .
.

. .
.

page 3

stack

data (heap)
Paging Trade-offs

✓ Eliminates external fragmentation

✓ Simplifies allocation, free, and backing storage (swap)

๏ Average internal fragmentation of .5 pages per "segment"

Physical Memory

unusable small space
(internal fragmentation)

Paging Data Structures

Pages are fixed size (e.g. 4K) so a virtual address has two parts:
• virtual page number : most significant bits
• and the page offset : least significant 12 bits (log2 4k)

The page table is a collection of page table entry (PTE) that maps
• a virtual page number (VPN)

i.e the index in the page table
• to physical page numbers (PPN) a.k.a frame number
• and includes bits for protection, validity, etc ...

Page Table Entries (PTEs)

• The Modify bit says whether or not the page has been written
(set when the write to a page occurs)

• The Reference bit says whether the page has been accessed
(set when a read or write to a page occurs)

• The Valid bit says whether or not the PTE can be used
(checked each time the virtual address is used)

• The Protection bits say what operations (read, write, execute) are
allowed on page

• The Physical page number (PPN) determines the physical page

Page Lookup

m r v p ppe

1 1 1 rw 5

page offset
3 128

Virtual Address

Page Table

Physical Memory

page offset
5 128

Physical Address

. .
.

Paging Advantages

✓ Easy to allocate memory
• Memory comes from a free list of fixed size chunks
• Allocating a page is just removing it from the list
• External fragmentation not a problem

✓ Easy to swap out chunks of a program
• All chunks are the same size
• Use valid bit to detect references to swapped pages
• Pages are a convenient multiple of the disk block size

Paging Limitations

๏ Can still have internal fragmentation

๏ Requires 2 or more references, which could limit performance

➡ Solution: use a hardware cache of lookups (coming next)

๏ The amount of memory to store the page table is significant
• Need one PTE per page, with 32 bit address space w/ 4KB pages = 2^20 PTEs
• 4 bytes/PTE = 4MB/page table
• 25 processes = 100MB just for page tables!

➡ Solution : page the page tables (coming next)

x86 Paging and Segmentation

x86 architecture supports both paging and segmentation
• Segment register base + pointer val = linear address
• Page translation happens on linear addresses

• Two levels of protection and translation check
• Segmentation model has four privilege levels (CPL 0–3)
• Paging only two, so 0–2 = kernel, 3 = user

