Virtual Memory

Thierry Sans

The problem of managing the memory

How to make programs and execution contexts co-
exists In memory!

v Placing multiple execution contexts (stack and heap)
at random locations iIn memory Is not a problem ...
.. well, as long as your have enough memory

® However having programs placed at random
locations Is problematic

(recap) Compiling and linking

- Compiler takes source code files and translates (binds)
symbolic addresses to logical, relocatable addresses within
compllation unit (object file)

- Linker takes collection of object files and translates
addresses to logical, absolute addresses within executable
(resolves references to symbols defined in other files/
modules)

Let's look at some C code and its binary

0804840b <foo>:

#inc lude <stdio.h> 804840b: 55 push ebp
804840c: 89 e5 mov ebp,esp
804840e: 83 ec 08 sub esp,0x8
. 8048411: 83 ec 0Oc sub esp,0xc
int fOO() { 8048414: 68 d0 84 04 08 push 0x80484d0
. 1! T 8048419: e8 c2 fe ff ff call 80482e0 <printfeplt>
prlntf(hello world!") ’ 804841e: 83 c4 10 add esp,0x10
} 8048421.: 90 nop
8048422: c9 leave
8048423: c3 ret
’ ‘ . 08048424 <main>:
int main(int a rgc, char xxa FQV) { 8048424: 8d 4c 24 04 lea ecx, [esp+0x4]
fOO() . 8048428: 83 e4 fO and esp,oxfffffffo
’ 804842b: ff 71 fc push DWORD PTR [ecx—0x4]
}_ 804842e: 55 push ebp
804842f: 89 e5 mov ebp,esp
8048431: 51 push ecx
8048432: 83 ec 04 sub esp,0x4
8048435: e8 dl1 ff ff ff call 804840b <foo>
' ' 804843a: b8 00 00 00 00 mov eax,0x0
Since function addresses and others sesssf: 83 ca o4 add esp,oxd
. . 8048442: 59 pop ecx
= 8048443: 5d pop ebp
are hard-encoded In the binary,the S 3 e
‘t b | d ‘t 8048447 : c3 ret
8048448: 66 90 xchg ax,ax
program Canno e p ace a 804844a: 66 90 xchg ax,ax

804844c: 66 90 xchg ax,ax

random locations in memory sodsdde: 66 90 wcha ax.ax

Naive Idea : load time linking

How about doing the linking when process executed, not at
complle time

= Determine where process will reside iIn memory and adjust
all references within program

@ How to relocate the program in memory during execution?
(consider functions but also data pointers now)
@ VWhat if no contiguous free region fits program?

@ How to avoid programs interfering with each others?

[ssues In sharing physical memory

Transparency
A process shouldn't require particular physical memory bits

* A process often require large amounts of contiguous memory (for stack, large data
Splieilires, etc.)

Resource exhaustion
* Programmers typically assume machine has “enough’™ memory

« Sum of sizes of all processes often greater than physical memory

Protection
* How to prevent A from even observing B's memory

* How to prevent process A from corrupting B's memory (whether it is intentional or not)

Virtual Memory Goals

* Provide a convenient abstraction for programming by giving
each program Its own virtual address space

» Allow programs to see more memory than exists

» Allocate scarce memory resources among competing
processes to maximize performance with minimal overhead

* Enforce protection by preventing one process from messing
with another's memory

Definrtions

* Programs load/store to virtual addresses
» Actual memory uses physical addresses

* Virtual memory hardware 1s the MMU
(Memory Management Unit)

» Usually part of CPU and configured through privileged
instructions (e.g,, load bound req)

» Translates from virtual to physical addresses

» QGives per-process view of memory called address space

Virtual Memory in a nutshell

he application does not see physical memory addresses

= Memory-Management Unit (MMU) relocates each
load/store at runtime

No, to fault handler |
s this address legal?

Kernel

Virtual Address Yes, the physical
0x30408 addressis 0x92408

Program Space

>

Virtual Memory Physical Memory

Virtual Memory Advantages

v (Can re-locate process while running erther in memory
or to disk (a.ka swap)

Technigues for implementing virtual memory

» Basic address translation
» Segmentation (the old way)

 Paging (the new way)

Basic Address [ranslation

Base & Bound registers

Two special privileged registers : base and bound
On each load/store/jump

 Physical address = virtual address + base

* (Check O = virtual address < bound, else trap to kernel

v OS can change these registers to move the process In memory

v OS must re-load base these register on context switch

Base + Bound lrade-offs

Advantages

v Cheap In terms of hardware : only two registers

v Cheap in terms of cycles : do add and compare in parallel

Disadvantages
@ Growing a process IS expensive

@ No way to share code or data

Stack (T1)

< Thread1

Thread 2 —

Stack (T2)

Stack (T3)

<— Thread 3

Heap

Static Data

<~— PC (T3)

PC (T2) —

Code

~——— PC(T)

= Solution : segmentation I.e separate code, stack and data segments

Segmentation

Virtual Memory Physical Memory

-
I
ot (cod)

|dea

text (code)

Fach process has a collection of multiple base/bound registers

= Address space Is bullt from many segments
(a.k.a segmentation table)

v (Can share/protect memory at segment granularity

MeChar“CS Physical Memory

Virtual Address

0x1000

128

ORI
Oz N

3 2'c

Segment Table

—» | 0x1000 256 it
|

Fach virtual address indicates
B R ot Index in the table (top: bits)

* and an offset (low bits)

O (ofes seoment #s In registers (CS, DS, 55, ES, FSRGES

Physical Memory

Segmentation lrade-offs W
unusable small space

R

(external fragmentation) \

Advantages

v Multiple sesments per process (sparse memory)
v (Can easily share memory

v Do not need entire process in memory (swap)

Disadvantages
@ Requires translation, which could Iimit performance

@ Makes external fragmentation a real problem

Fragmentation

Fragmentation is the inability to use free memory

= Over time

- External fragmentation
because of variables sized pieces (1.e many small holes)

 Internal fragmentation
B e Ol lXed siZe pleces (I.e no externalFeiSEE
internal waste of space)

Paging
(Introduction)

Virtual Memory Physical Memory

.
dea .
.

page 2

f

page 3

“ page n |\

= Divide memory up Into fixed-size pages
to eliminate external fragmentation

—ach process has a collection of maps from virtual pages to
bhysical pages

v (Can share/protect memory at page granularity

Physical Memory

Paging [rade-offs .
unusable small space / \—I

(internal fragmentation) \ ﬁ

v Eliminates external fragmentation
@ Average Internal fragmentation of .5 pages per "segment”

v Simplifies allocation, free, and backing storage (swap)

Paging Data Structures

Pages are fixed size (e.g. 4K) so a virtual address has two parts:
* virtual page number : most significant bits

- and the page offset : [east significant |2 bits (logz 4k)

The page table I1s a collection of page table entry (PTE) that maps

- avirtual page number (VPN)
.e the index In the page table

- to physical page nhumbers (PPN) aka frame number

» and includes brts for protection, validity, etc ..

Page lable Entries (PTEs)

* The Modify bit says whether or not the page has been written
(set when the write to a page occurs)

* [he Reference bit says whether the page has been accessed
(set when a read or write to a page occurs)

* The Valid bit says whether or not the PTE can be used
(checked each time the virtual address Is used)

* The Protection bits say what operations (read, write, execute) are
allowed on page

* [he Physical page number (PPN) determines the physical page

Page Lookup

Physical Memory

Virtual Address

B

3 128 l
Physical Address
5 128
Page Table t

m v poppe

rw 5

Paging Advantages

v Easy to allocate memory
» Memory comes from a free list of fixed size chunks
» Allocating a page Is just removing it from the list

» External fragmentation not a problem

v Easy to swap out chunks of a program
» All chunks are the same size
» Use valid bit to detect references to swapped pages

Pages are a convenient multiple of the disk block size

Paging Limrtations

@ Can still have internal fragmentation
® Requires 2 or more references, which could limit performance
= Solution: use a hardware cache of lookups (coming next)

@ [he amount of memory to store the page table Is significant

* Need one PTE per page, with 32 bit address space w/ 4KB pages = 2720 PTEs
* 4 bytes/PTE = 4MB/page table
« 25 processes = |OOMB just for page tables!

= Solution : page the page tables (coming next)

X36 Paging and Segmentation

X386 architecture supports both paging and segmentation
» Segment register base + pointer val = linear address

* Page translation happens on linear addresses

* [wo levels of protection and translation check
» Segmentation model has four privilege levels (CPL 0-3)

Eacins only two, so 0—2 = kernel, 3 = user

