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Improving paging

• Smaller page tables

• Faster address translation

• Larger virtual than physical memory (swapping)

• Advanced Functionality



Smaller page tables



The problem

Each process has a page table defining its address space
๏ Considering 32-bit address space with 4K pages  

the size of the pages table is 2^32 / 2^12 × 4 B = 4MB / process 
this is a big overhead!
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Solution

๏ Problem: each process has a page table that maps all pages 
in its address space

✓ Solution: we only need to map the portion of the address 
space actually being used 

➡ Use another level of indirection : two-level page tables



Two-Level Page Tables

Virtual addresses have three parts
• a master page number i.e the index in the master 

page table (a.k.a "page directory") that maps to a 
secondary page table

• a secondary page number i.e the index in the 
secondary page table (a.k.a "page table")  that maps to the 
physical memory

• an offset that indicates where in physical page address is 
located
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32 bits address space, 4K pages, 4 bytes/PTE

• How many bits in offset? 4K 
so the virtual address requires requires12 bits for the offset

• We want the Page Directory to fit in one page 
4K/4 bytes = 1K possible entries 
so the virtual address requires 10 bits for the Page Directory index

• We also want each Page Table to fit in one page 
so the virtual address requires 10 bits for the Page Table index

➡ 10 + 10 + 12 = 32 bits address 
This is why 4K page size is recommended



x86 Paging

• Paging enabled by bits in a control register %cr0 
(only privileged OS code can manipulate control registers)

• Register %cr3 points to 4KB Page Directory  
(for Pintos, see pagedir_activate() in userprog/pagedir.c)

• Page directory has 1024 PDEs (Page Directory Entries) (see pagination details)
• Each contains physical address of a Page Table
• Each Page Table has 1024 PTEs (Page Table Entries) and covers 4 MB of 

virtual memory
• Each contains physical address of virtual 4K page



x86 Page Translation



Faster Address Translation



Efficient Translations

๏ Problem : expensive memory access
• One-page table : one table lookup + one fetch
• Two-level page table (32 bits): 2 table lookups + one fetch
• 4-level page table (64 bits) : 4 table lookup + one fetch

✓ Solution : Translation Lookaside Buffer (TLB) 
cache translations in hardware to reduce lookup cost



Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers 
special hardware to translate virtual page #s into PTEs  
(not physical address) in a single machine cycle

• Typically 4-way to fully associative cache (all entries looked up in 
parallel)

• Cache 32-128 PTE values (128-512K memory)

➡ TLBs exploit locality : processes only use a handful of pages at a time  
TLB hit rate is a very important for performances  
(>99% of translations)
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Page lookup

Process is executing on the CPU, and it issues a read to an address 
The read goes to the TLB in the MMU 

1. TLB does a lookup using the page number of the address 
2. Common case is that the page number matches, returning a page 

table entry (PTE) for the mapping for this address 
3. TLB validates that the PTE protection allows reads (in this example) 
4. PTE specifies which physical frame holds the page 
5. MMU combines the physical frame and offset into a physical address 
6. MMU then reads from that physical address, returns value to CPU

➡ This is all done by the hardware



TLB misses

• TLB does not have a PTE mapping this virtual address 

• or PTE in TLB, but memory access violates PTE protection bits



Swapping



Paged Virtual Memory

➡ The OS can use disk to simulate larger virtual than physical memory 
the pages can be moved between memory and disk (a.k.a paging in/out)

Paging process over time
• Initially, pages are allocated from memory
• When memory fills up, allocating a page requires some other page to be evicted
• Evicted pages go to disk, more precisely to the swap file/backing store
• Done by the OS, and transparent to the application

Improvement : demand paging (a.k.a lazy loading) in a page from disk into memory 
only if an attempt is made to access it (the main memory becomes a cache for disk)



Page Faults

Read/write/execute protection bits : operation not permitted on page
➡ The TLB traps to the OS and the OS usually will send fault back up to process, or 

might be playing games e.g., copy on write, mapped files (coming later in this lecture)

Invalid bits : 2 possible reasons

1. Virtual page not allocated
➡ The TLB traps to the OS and the OS sends fault to process (e.g., segmentation 

fault)TLB traps to the OS (software takes over)

2. Virtual page is allocated in the address space but swapped on disk
➡ The TLB traps to the OS and the OS sends allocates frame, reads from disk, maps 

PTE to physical frame



Page Faults

1. When the OS evicts a page, it sets the PTE as invalid and stores the location of the 
page in the swap file in the PTE 

2. When a process accesses the page, the invalid PTE causes a trap (page fault) 
3. The trap will run the OS page fault handler 
4. Handler uses the invalid PTE to locate page in swap file 
5. Reads page into a physical frame, updates PTE to point to it 
6. Restarts process 



There is more to the topic of swapping

➡ More on swapping in the next lecture 
Mechanisms and policy to evict page from memory



Address Translation : Putting It All Together



Advanced Functionality
• Shared memory
• Copy on Write
• Mapped files



Sharing

Private VM spaces protect applications from each other

๏ But this makes it difficult to share data between processes

✓ Have shared memory to allow processes to share data using 
direct memory references (synchronization required)

➡ See Unix System V Shared Memory Segment (shmget) 



Sharing Pages



Shared memory address mapping

Can map shared memory at same or different virtual addresses 
in each process’ address space ? 

• Different Mapping 
Flexible but pointers inside shared memory are invalid 
(case for shmget)

• Same Mapping 
Less flexible but shared pointer are valid



Copy on Write

๏ OSes spend a lot of time copying data
• System call arguments between user/kernel space
• Entire address spaces to implement fork()

➡ Use Copy on Write (CoW) to defer large copies as long as possible, hoping 
to avoid them altogether

• Create shared mappings of parent pages in child virtual address space 
(instead of copying pages)

• Shared pages are protected as read-only in parent and child 
Any write operation generates a protection fault, trap to OS, copy page, 
change page mapping in client page table, restart write instruction



Example - Fork step



Example - Write step



Mapped Files

Mapped files enable processes to do file I/O using loads and stores 
Instead of "open, read into buffer, operate on buffer, …"

➡ Bind a file to a virtual memory region (see Unix mmap)
• PTEs map virtual addresses to physical frames holding file data 
• Virtual address base + N refers to offset N in file

Initially, all pages mapped to file are invalid (similar to a swapped page)
• OS reads a page from file when invalid page is accessed
• OS writes a page to file when evicted, or region unmapped
• If page is not dirty (has not been written to), no write needed 

(another use of the dirty bit in PTE)



Advantages and drawbacks of mapped files

➡ File is essentially backing store for that region of the virtual 
address space (instead of using the swap file)

✓ Uniform access for files and memory (just use pointers)

๏ Process has less control over data movement 
OS handles faults transparently

๏ Does not generalize to streamed I/O (pipes, sockets, etc.)



Next time

➡ More on swapping 
Mechanisms and policy to evict page from memory


