
User Programs

Thierry Sans

The need for protection

prog A

stack A

heap A

prog B

stack B

heap B User programs might
interfere with each other if
they share the same memory

User program can
interfere with the kernel

Kernel

kernel stack

kernel heap

User programs must
access shared
resources through
the kernel

Definition of the process and system calls

principle 3: process can access
resources through kernel system-calls

principle 2: the kernel has
privileged access to the entire
memory (kernel mode)

user mode

kernel mode

prog A

stack A

heap A

prog B

stack B

heap B

Kernel

kernel stack

kernel heap

principle 1: user programs are run
as processes isolated from each other
(user mode)

process
B

process
A

How can we isolate processes
and kernel memory spaces?

➡ The Virtual Memory (coming soon)

In a nutshell
• User programs do not directly access the memory but the virtual memory

(that is somehow mapped onto the real memory)

• The kernel manages the virtual memory for all processes

System Calls

The need for abstraction for accessing resources

How to write a user program like the Bash shell that reads keyboard inputs from the
user?

➡ Read input data from the I/O device directly? But which one?
• The one connected to the PS2 port?
• The one connected to the USB?
• The one connected to the bluetooth?
• The remote one connected to the network?

How do you synchronize access with other programs using the keyboard as well?

๏ User programs do not operate I/O devices directly

✓ The OS abstracts those functionalities and manage access through system calls

System Calls

➡ Provide user programs with an API to use the
services of the operating system

There are 5 categories of system calls
• Process control
• File management
• Device management
• Information/maintenance (system configuration)
• Communication (IPC)
• Protection

✓ There are 393 system calls on Linux 3.7
http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf

Shell

I/O

read

user program

system call

kernel

memory

http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf

scanf

In reality, many (many) level of
abstraction and modularity

➡ This is what makes developing OS
very challenging (CSCB07)

scanf

I/O

read

system lib

system call

kernel

memory

Shell

user program

load
device driver

kernel module

get
interface

c std lib

How to invoke system calls

The system calls look like some sort of "kernel API"

➡ Yes but how to invoke a system call like an API call
if the process cannot access the kernel memory?

✓ Using software interrupts (a.k.a syscall trap)

Invoking a System Call

5) the system call function
executes and (possibly returns
value by pushing them onto
the stack of the interrupted
program

prog

stack

user mode

kernel mode

...
write("hello world")

kernel

process
lib/write

1) the program calls a library
function

syscall num
arg #0

write(s):
push("write")
push(s)
int x80

2) the library function pushes
the syscall number and its
arguments onto the stack and
triggers a software interrupt

x80 interrupt
handler

3) the interrupt handler reads
the stack of the interrupted
program to extract the system
call number and the arguments

syscall/write

4) the interrupt handler calls
the corresponding kernel
system call function

I/O

Process

From the programmer's perspective

• Create and terminate

• Communicate

• Get information

• Control process (stop and resume)

Process Control Block

PCB (Process Control Block) - data structure to record
process information

• Pid (process id) and ppid (parent process)

• (optional) User

• Address space (forthcoming lecture on memory management)

• Open files (coming next with filesystem)

• Others

Create a process

➡ A process is created by another process
(concept of parent process and child process)

➡ The kernel creates the root parent as part of the booting
e.g shell program for a simple OS
e.g Window Manager for a GUI OS

Process creation on Unix using fork

int fork()

1. Creates and initializes a new PCB
2. Creates a new address space
3. Initializes the address space with a copy of the entire contents of the

address space of the parent (with one exception)
4. Initializes the kernel resources to point to the resources used by

parent (e.g., open files)
5. Create a kernel thread associated with this process

and place that thread onto the ready queue

Why fork and exec?

fork is very useful when the child…

• is cooperating with the parent

• relies upon the parent’s data to accomplish its task

➡ Simple interface

Example : a web server

Process creation on Unix using exec

int exec(char *prog, char *argv[])

1. Stops the current process
2. Loads the program “prog” into the process’ address space
3. Initializes hardware context and args for the new program
4. Places the PCB onto the ready queue

➡ Actually, exec does not create a new process

Spawning

✓ Most calls to fork are followed by exec (a.k.a spawn)

• minish.sh

• redirsh.c

• pipesh.c

Argument against fork

"A fork() in the road"
Andrew Baumann (Microsoft Research), Jonathan Appavoo, Orran Krieger (Boston
University), Timothy Roscoe (ETH Zurich) - In Proceedings of HotOS 2019

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

➡ The main argument is security

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

Process creation on Windows

CreateProcess: BOOL CreateProcess(char *prog, char *args)

1. Creates and initializes a new PCB
2. Creates and initializes a new address space
3. Loads the program specified by “prog” into the address space
4. Copies “args” into memory allocated in address space
5. Initializes the saved hardware context to start execution at main

(or wherever specified in the file)
6. Places the PCB on the ready queue

Wait for a process

Unix : wait(int *wstatus)

Windows : WaitForSingleObject

Terminate a process

Unix : exit(int status)

Windows : ExitProcess(int status)

➡ The OS will cleanup after the process:

• Terminates all threads (coming next)
• Closes open files, network connections
• Frees allocated memory (and VM pages out on disk)
• Removes PCB from kernel data structures

User thread

The cost of multi-processing

Recall our Web Server example
we need to fork a child process for each request

• Create a new PCB

• Copy the address space and the resources

• Have the OS execute this child process
(switching process involves remapping the virtual memory)

• Use signals and pipes if the child wants to send information back
to the parent process

A good but costly abstraction

✓ Good to avoid processes interfering with each other but ...

๏ Creating a process is costly (space and time)

๏ Context switching is costly (time)

๏ Inter-process communication is costly (time)

User Threads

Modern OSes separate the concepts of processes and threads
• The thread defines a sequential execution stream within a

process (PC, SP, registers)
• The process defines the address space and general

process attributes (everything but threads of execution)

✓ A thread is bound to a single process but a process can have
multiple threads

Threads within a process

Our web server becomes

Benefits

• Responsiveness
an application can continue running while it waits for some events in the
background

• Resource sharing
threads can collaborate by reading and writing the same data in memory
(instead of asking the OS to pass data around)

• Economy of time and space
no need to create a new PCB and switch the entire context
(only the registers and the stack)

• Scalability in multi-processor architecture
the same application can run on multiple cores

Multithreading Model

Disambiguation

• Process
running instance of a program

• User thread
user-defined concurrency within a process

• Kernel thread
the unit of scheduling Kernel space

User space

Multithreading models

• One-to-one model
Kernel-level threads (a.k.a native threads)

• Many-to-one model
User-level threads (a.k.a green threads)

• Many-to-many model
Hybrid threads (a.k.a n:m threading)

One-to-one model
Kernel-level threads
(a.k.a native threads)

The kernel manage and schedule threads
• e.g Windows threads
• e.g POSIX pthreads PTHREAD_SCOPE_SYSTEM
• e.g (new) Solaris lightweight processes (LWP)

➡ All thread operations are managed by the kernel
✓ good for scheduling
✓ bad for speed

POSIX Thread API

• Create a new thread, run fn with arg
tid thread_create (void (*fn) (void *), void *);

• Allocate Thread Control Block (TCB)
• Allocate stack
• Put func, args on stack
• Put thread on ready list

• Destroy current thread
void thread_exit ();

• Wait for thread to exit
void thread_join (tid thread);

Many-to-one model
User-level threads
(a.k.a green threads)

One kernel thread per process
thread management and scheduling is delegated to a library

• e.g pthreads PTHREAD_SCOPE_PROCESS
• e.g Java threads

➡ The kernel is not involved
✓ Very lightweight and fast
✓ All threads can be blocked if one of them is waiting or an event
✓ Cannot be scheduled on multiple cores

Many-to-many model
Hybrid threads
(a.k.a n:m threading)

User threads implemented on kernel threads
• e.g (old) Solaris

➡ Multiple kernel-level threads per process

Acknowledgments

Some of the course materials and projects are from

• Ryan Huang - teaching CS 318 at John Hopkins University

• David Mazière - teaching CS 140 at Stanford

