Scheduling

Thierry Sans

(recap) Ihe different states of a thread

created

timeout (interrupt)

o e

ready —— , running

elected
/O response Terminates
(external interrupt) or dgfault
/O request via trap (software interrupt)

(internal interrupt)
waitin .
& terminated

CPU;

ne scheduling
problem - . CPU;

CPU,

* n threads ready to run

e [CPUs

= Scheduling Policy
which jobs should we assign to which CPU(s)?
and for how long!

Non Goals : Starvation

Starvation is when a thread Is prevented from making
progress because some other thread has the resource 1t
requires (could be CPU or a lock)

= Starvation is usually a side effect of the scheduling algorithm

* e.g a high priority thread always prevents a low priority
thread from running

= Starvation can be a side effect of synchronization

* e.g constant supply of readers always blocks out writers

Scheduling Criteria

- Throughput — # of threads that complete per unit time
jobs/time (Higher is better)

- Turnaround time — time for each thread to complete
Tfinish — Tstart (Lower Is better)

- Response time — time from request to first response ()
.e. time between wairting to ready transition and ready to running transition
Tresponse — Trequest (Lower Is better)

= Above criteria are affected by secondary criteria
» CPU utilization — %CPU fraction of time CPU doing productive work
« Waiting time — Avg(Twait) time each thread walits in the ready queue

e ie balance criterial

- Batch systems (supercomputers)
strive for job throughput and turnaround time

- Interactive systems (personal computers)
strive to minimize response time for interactive jobs

However, In practice, users prefer predictable response time
over faster but highly variable response time

Often optimized for an average response time

Two kinds of scheduling algorithm

- Non-preemptive scheduling (good for batch systems)
once the CPU has been allocated to a thread, it keeps the
CPU until it terminates

- Preemptive scheduling (good for interactive systems)
CPU can be taken from a running thread and allocated to

another

FCFS - First Come First Serve
(non-preemptive) e
0 24 27 30

= Run |jobs in order that they arrive (no interrupt)

Throughput 5 s =N eles /it
Turnaround (24 + 27 + S0y 5= 2/ see e =gerE

Waiting Time (O + 24+ 27) | 5. =" 1/ seeing iegi==

@ Problem : convoy effect
all other threads wait for the one big thread to release the CPU

S|F - Shortest-|ob-First
(non-preemptive)

= (Choose the thread with the shortest processing time

Pe [P [P

0 3 6 30

Throughput s sUi=0NSebsiceE

Turnaround (30 + 3+ 6)/ 3 = |5 sceifialchc=c

Waiting Time (U 55 6}/ 3 = SiseciffacEs

@ Problem : we need to know processing time In advance

SRTF - Shortest-Remaining- T ime-First
(preemptive)

Process ArrivalTime BurstTime
P; 0 7
P> 2 4
P3 4 1
P4 5 4

= | a new thread arrives with CPU burst length less than remaining
time of current executing thread, preempt current thread

P | P, |Ps| P Py P,
I

0 2 4 5 7 11 16

v Good : optimize waiting time

@ Problem : can lead to starvation

RR - Round Robin
(preemptive)

= tach job Is given a time slice called a quantum, preempt job
after duration of gquantum, move to back of FIFO queue

v Good : fair allocation of CPU, low waiting time (interactive)

@ Problem : no priority between threads

Time Quantum

= (Context switches are frequent and need to be very fast

» How to pick quantum?
* Want much larger than context switch cost

» Majority of bursts should be less than gquantum - But not
ESRlaRoe systicml reverts to FCES

v Typical values: | =100 ms

Why having priorities?

v Optimize job turnaround time for “batch” jobs

v Minimize response time for “interactive” jobs

MLQ - Multilevel Queue Scheduling
(preemptive)

= Assoclate a priority with each thread and execute highest
priority thread first. If same priority, do round-robin.

high-priority queue
(e.g system thread) ’_’ 13 hamd 16
medium priority
(eg. user thread) g
low priority

(e.g background thread)

@ Problem | : starvation of low priority thread
@ Problem 2 : (possibly) starvation of high priority thread

@ Problem 3 : how to decide on the priority?

MLQ - Starvation of high priority thread

|. TI (low priority) starts, runs and acquires the lock 1

2. T2 (medium priority) starts, preempts the CPU and runs

ERRE AR chrpriority) starts, preempts the CPU, runs
but gets blocked while trying to acquire the lock 1

4. T2 1s elected to run (highest priority thread to be ready to run)
@ Problem :starvation of a high priority thread

v Solution : priority donation

MLQ - Priority donation (simple example)

|. T1 (low priority) starts, runs and acquires the lock 1

2. T2 (medium priority) starts, preempts the CPU and runs

3. 13 (high priority) starts, preempts the CPU, runs
but gets blocked while trying to acquire the lock 1

SRloRe Vesits hish priority to T |

>. T (now high priority) runs, releases the lock and returns to low priority
immediately after

6. 13 (now unblocked) preempts the CPU and runs

Solutions to other MLQ problems

= To prevent starvation of low priority thread
change the priority over time by erther

* Increase priority as a function of waiting time
» or decrease priority as a function of CPU consumption

= To decide on the priority
by observing and keeping track of the thread CPU usage

MLFQ - Multilevel Feedback Queue Scheduling
(preemptive)

= Same as MLQ but change the priority of the process based
on observations

Rule | |If Priority(A) > Priority(B), A runs

It Priority(A) = Priority(B), A & B run in round-robin fashion using the time slice

pae 2 (quantum length) of the given queue

When a job enters the system, it Is placed at the highest priority

e 3 (the topmost queue)

Once a job uses up Iits time allotment at a given level (regardless of how many times

pae it has given up the CPU), its priority Is reduced (l.e., it moves down one queue)

Rule 5 |After some time period S, move all the jobs In the system to the topmost queue

v Good : [uring-award winner algorithm

Preemption ¢

Operating System $ Algorithm s
Amiga OS Yes Prioritized round-robin scheduling
FreeBSD Yes Multilevel feedback queue
Linux kernel before 2.6.0 Yes Multilevel feedback queue
Linux kernel 2.6.0-2.6.23 Yes O(1) scheduler
Linux kernel after 2.6.23 Yes Completely Fair Scheduler
classic Mac OS pre-9 None Cooperative scheduler
Mac OS 9 Some Preemptive scheduler for MP tasks, and cooperative for processes and threads
macOS Yes Multilevel feedback queue
NetBSD Yes Multilevel feedback queue
Solaris Yes Multilevel feedback queue
Windows 3.1x None Cooperative scheduler
Windows 95, 98, Me Half Preemptive scheduler for 32-bit processes, and cooperative for 16-bit processes
Windows NT (including 2000, XP, Vista, 7, and Server) Yes Multilevel feedback queue

source: Wikipedia - Scheduling (Computing)

https://en.wikipedia.org/wiki/Scheduling_(computing)

Acknowledgments

Some of the course materials and projects are from
* Ryan Huang - teaching CS 318 at John Hopkins University

* David Maziere - teaching CS 140 at Stanford

