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Disambiguation

• The textbook talks about managing processes

• Pintos does not have processes at all but "kernel threads"

• In your system programming class, you could create multiple "user 
threads" under a process

➡ Let's simplify things just for this week :

process ~ thread



Program vs Thread

• Program : static data on some storage

• Thread : instance of a program execution

➡ Different threads executing the same program  
can run concurrently
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Running threads concurrently
A CPU core will run multiple thread concurrently by running each thread for a little 
amount of time before switching to another one

➡ Limited Direct Execution

The CPU will switch to another thread when either
• the running thread yields the CPU (non-blocking IO for instance)
• or the CPU stops the running thread (system clock interrupt)
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The advantages of concurrency

✓ From the system perspective 
better CPU usage resulting in a faster execution overall  
(but not individually)

✓ From the user perspective 
programs seem to be executed in parallel

➡ It requires some mechanisms to manage and 
schedule these concurrent threads 



Today's lecture

1. Interrupts

2. Context Switching

3. Synchronization



1.  Interrupts



Two kinds of interrupts

External Interrupts a.k.a hardware interrupts  
caused by an I/O device that needs some attention (asynchronous)

Internal Interrupts a.k.a system calls, exceptions and 
faults caused by executing instructions (synchronous)

• fault  
e.g divide by zero 
e.g page fault (coming later with memory management)

• trap - x86 int instruction (intended by the programmer) 
e.g int $0x80 for Linux system call trap 
e.g int $0x30 for Pintos system call trap



External Interrupt - the naive implementation

➡ I/O devices are wired to Interrupt Request lines (IRQs)

๏ Not flexible (hardwired)
๏ CPU might get interrupted all the time
๏ How to handle interrupt priority
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Internal Interrupt and External Interrupt 
- the real implementation

➡ I/O devices have unique or shared IRQs that are managed by 
two Programmable Interrupt Controllers (PIC)
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Programmable Interrupt Controllers (PIC)

➡ Responsible to tell CPU when and which devices wishes to 
interrupt through the INTR vector

✓ 16 lines of interrupt (IRQ0 - IRQ15)

✓ Interrupts have different priority

✓ Interrupts can be masked



Handling an interrupt

1. The CPU receives an interrupt on the INTR vector
2. The CPU stops the running program and transfer control to 

the corresponding handler in the Interrupt Descriptor Table 
(IDT)

3. The handler saves the current running program state 
4. The handler executes the functionality
5. The handler restores (or halt) the running program



Where are these interrupt handlers defined

• Linux  
cat /proc/interrupt

• Windows 
msinfo32.exe

• Pintos 
see src/threads/interrupt.c



Example

When a key is pressed… 
1. the keyboard controller tells PIC to cause an interrupt on IRQ #1
2. the PIC decides if CPU should be notified 
3. If so, IRQ 1 is translated into a vector number to index into CPU’s Interrupt 

Descriptor Table
4. The CPU stops the current running program
5. The CPU invokes the current handler 
6. The handler talks to the keyboard controller via IN and OUT instructions to 

ask what key was pressed 
7. The handler does something with the result (e.g write to a file in Linux) 
8. The handler restores the running program



2.  Context Switching



When the CPU runs threads concurrently

• Only one thread at a time is running (on one core)

• Several threads might be ready to be executed

• Several threads might be waiting for an I/O response



The different states of a thread
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Context switching when

When the OS receives a fault
1. suspends the execution of the running thread
2. terminate the thread

When the OS receives a System Clock Interrupt or a System Call Trap (I/O request)
3. suspends the execution of the running thread
4. saves its execution context
5. changes the thread's state to ready (timeout) or waiting (I/O request )
6. elects a new thread from the ones in the ready state
7. changes its state to running
8. restores its execution context 
9. resumes its execution

When the OS receives any other I/O interrupt
1. executes the I/O operation 
2. switches the thread, that was waiting for that I/O operation, into the ready state
3. resumes the execution of the current program

➡ For each thread, the OS needs to keep track of its state (ready, running, waiting)  
and its execution context (registers, stack, heap and so on)



TCB (Thread Control Block)

Data structure to record thread information

• Tid (thread id)

• State (as either running, ready, waiting)

• Registers (including eip and esp)

• Pointer to a Process Control Block (coming next week)

• User (forthcoming lecture on user space)



State Queues

➡ The OS maintains a collection of queues with the TCBs of all 
threads

• One queue for the threads in the ready state

• Multiple queues for the threads in the waiting state  
(one queue for each type of I/O requests)



3.  Synchronization



Now threads can collaborate but ...

What are these two threads printing?

while(1){ 
  printf("ping\n"); 
};

Ping thread

while(1){ 
  printf("pong\n"); 
};

Pong thread



Too much milk

Alice Bob

12:30 Look in the fridge. Out of milk.

12:35 Leave for store

12:40 Arrive at store Look in the fridge. Out of milk.

12:45 Buy milk Leave for store

12:50 Arrive home, put milk away Arrive at store

12:55 Buy milk

1:00 Arrive home, put milk away 
 ... oh no!



Beyond milk

X is a global variable initialized to 0

void foo(){ 
   x++; 
};

thread 1

void bar(){ 
   x--; 
};

thread 2

What is the value of x after thread 1 and 2?



CPU instruction level

LOAD X  
INCR  
STORE X 

thread 1 (foo function)

LOAD X  
DECR  
STORE X

thread 2 (bar function)

Incrementing (or decrementing) x is not an atomic operation



Non-deterministic execution

Execution scenario #1

LOAD X  
INCR  
STORE X 
LOAD X  
DECR  
STORE X 

➡ X is equal to 0

Execution scenario #2

LOAD X 
LOAD X 
INCR 
DECR  
STORE X 
STORE X 

➡ X is equal to -1

Execution scenario #3

LOAD X 
LOAD X 
INCR 
DECR  
STORE X 
STORE X 

➡ X is equal to 1

... and many other possible scenarios with the outcome of  
x being equal to either 0, -1 or 1



Race-condition problem

The system behaviours depends on the sequence or timing of 
events that is non-deterministic

๏ Not desirable in most cases (hard to catch bug) 



Mutual Exclusion

We want to use mutual exclusion to synchronize access to 
to shared resources

Code that uses mutual exclusion to synchronize its execution is 
called a critical section 

• Only one thread at a time can execute in the critical 
section

• All other threads are forced to wait on entry
• When a thread leaves a critical section, another can enter



A classical example - Producer Consumer

void producer () {  
  while(1){ 
     item := produce() 
     while(full(buffer)){ 

 /* do nothing */ 
     }     
     write(buffer, item) 
 }  
}

void consumer () {  
  while(1){  
     while(emtpy(buffer)){ 

  /* do nothing */ 
     }      
     item := read(buffer) 

 consume(item) 
  }  
}

Critical Section



Requirements

1. Mutual exclusion 
If one thread is in the critical section, then no other is
➡ Mutual exclusion ensures safety property (nothing bad happen) 

2. Progress 
If some thread T is not in the critical section, then T cannot prevent some other thread S from 
entering the critical section. A thread in the critical section will eventually leave it. 

3. Bounded waiting (no starvation) 
If some thread T is waiting on the critical section, then T will eventually enter the critical section
➡ Progress and bounded waiting ensures the liveness property (something good happen)

4. Performance 
The overhead of entering and exiting the critical section is small with respect to the work being 
done within it



The concept of lock (a.k.a mutex)

• The lock supports three operations: 
• init()  

creates an unlocked mutex
• acquire() 

waits until the mutex is unlocked, then locks it to enter the 
C.S

• release() 
unlocks the mutex to leave the C.S, waking up anyone 
waiting for it



(Bad) Producer Consumer using a lock

๏ The producer might write into a full buffer
๏ The consumer might read from an empty buffer

void producer () {  
  while(1){ 
     item := produce() 
     acquire(lock) 
     write(buffer, item) 
     release(lock) 
  }  
}

void consumer () {  
  while(1){  
     acquire(lock)      
     item := read(buffer) 

 release(lock) 
 consume(item) 

  }  
}

lock := init()



(Good) Producer consumer using a lock

void producer () {  
  while(1){ 
     item := produce() 
     acquire(lock) 
     while(full(buffer)){ 

  release(lock) 
  yield(); 
  acquire(lock) 

     }     
     write(buffer, item) 
     release(lock) 
  }  
}

void consumer () {  
  while(1){  
     acquire(lock) 
     while(emtpy(buffer)){ 

  release(lock) 
  yield(); 
  acquire(lock) 

     }      
     item := read(buffer) 

 release(lock) 
 consume(item) 

  }  
}

lock := init()



Another Synchronization Construct 
Condition Variable 

A condition variable supports three operations
• cond_wait(cond, lock)  

unlock the lock and sleep until cond is signaled 
then re-acquire lock before resuming execution

• cond_signal(cond) 
signal the condition cond by waking up the next thread

• cond_broadcast(cond) 
signal the condition cond by waking up all threads



Producers Consumers using a condition 
variable

void producer () {  
 while(1){ 
  item := produce() 
  acquire(mutex) 
  if (full(buffer)) 
     cond_wait(not_full, mutex) 
  write(buffer, item) 
  cond_signal(not_empty) 
  release(mutex) 
 }  
}

void consumer () {  
 while(1){  
  acquire(mutex)      
  if (empty(buffer)) 
     cond_wait(not_empty, mutex) 
  item := read(buffer) 
  cond_signal(not_full) 
  release(mutex) 
  consume(item) 
 }  
}

cond_init(not_full) 
cond_init(not_empty)



Another Synchronization Construct 
Semaphore

An abstract data type to provide mutual exclusion 
described by Dijkstra in the "THE multiprogramming system" in 1968 

➡ Semaphores are “integers” that support two operations:
• Semaphore::P() decrement, block until semaphore is open 

a.k.a wait(), or sem_wait(), or sema_down()
• Semaphore::V() increment, allow another thread to enter 

a.k.a signal(), or sem_post(), or sema_up()

✓ Semaphore safety property 
the semaphore value is always greater than or equal to 0



Blocking mechanism

Associated with each semaphore is a queue of waiting threads 

➡ When P() is called by a thread: 
• If semaphore is open, thread continue
• If semaphore is closed, thread blocks on queue

➡ Then V() opens the semaphore
• If a thread is waiting on the queue, the thread is unblocked
• If no threads are waiting on the queue, the signal is remembered 

for the next thread



(Bad) Producer Consumer using a semaphore

void producer () {  
  while(1){ 
     item := produce() 
     sem_wait(not_full) 
     write(buffer, item) 
     sem_signal(not_empty) 
  }  
}

void consumer () {  
  while(1){  
     sem_wait(not_empty)      
     item := read(buffer) 

 sem_signal(not_full) 
 consume(item) 

  }  
}

๏ Producer and consumer can be in the critical section at the same time

sem_init(not_full, n) 
sem_init(not_empty, 0) 



(Bad) Producer consumer using a semaphore

void producer () {  
  while(1){ 
     item := produce() 
     sem_wait(mutex) 
     sem_wait(not_full) 
     write(buffer, item) 
     sem_signal(not_empty) 
     sem_signal(mutex) 
  }  
}

void consumer () {  
  while(1){  
     sem_wait(mutex) 
     sem_wait(not_empty)      
     item := read(buffer) 

 sem_signal(not_full) 
 sem_signal(mutex) 
 consume(item) 

  }  
}

๏ Deadlock : the producer waits for the consumer to release mutex while 
the consumer waits for producer to release not_empty (or vice versa)

sem_init(not_full, n) 
sem_init(not_empty, 0) 
sem_init(mutex, 1)



Deadlock

Deadlock when one thread tries to access a resource that a 
second  holds, and vice-versa
๏ They can never make progress

void thread1 (){ 
     ... 
     sem_wait(sem1) 
     sem_wait(sem2) 
     /* critical section */ 
     sem_signal(sem2) 
     sem_ignal(sem1) 
     ... 
}

void thread2(){ 
     ...      
     sem_wait(sem2) 
     sem_wait(sem1)      
     /* critical section */ 

 sem_signal(sem1) 
 sem_signal(sem2) 

... 
}



(Good) Producers Consumer using semaphores

void producer () {  
  while(1){ 
     item := produce() 
     sem_wait(not_full) 
     sem_wait(mutex) 
     write(buffer, item) 
     sem_signal(mutex) 
     sem_signal(not_empty) 
  }  
}

void consumer () {  
  while(1){  
     sem_wait(not_empty) 
     sem_wait(mutex)      
     item := read(buffer) 

 sem_signal(mutex) 
 sem_signal(not_full) 
 consume(item) 

  }  
}

sem_init(not_full, n) 
sem_init(not_empty, 0) 
sem_init(mutex, 1)



How to avoid deadlocks

Avoiding deadlock using primitive synchronization 
mechanisms (locks and semaphores) is hard (cf chapter 32)



Implementing synchronization constructs

Two approaches :

• Either implement locks first (Linux approach)  
and build semaphores and condition variable on the top
➡ Linux has two versions

• Spinlock (non-blocking)
• Mutex (blocking)

• Or implement semaphores first (Pintos approach) 
and build locks and condition variable on top
➡ Pintos approach



(bad) implementation of a spin lock 

struct lock {  
    int held = 0;  
}  

void acquire (lock) {  
    while (lock->held);  
    lock->held = 1;  
}  

void release (lock) {  
    lock->held = 0;  
}

What is the context switch 
happens in between?
➡ We have a race condition



The hardware to the rescue

• test-and-set(TAS x86 CPU instruction) 
atomically writes to the memory location  
and returns its old value in a single indivisible step

➡ the caller is responsible for testing if the operation has 
succeeded or not

bool test_and_set(bool *flag) {  
  bool old = *flag;  
  *flag = True;  
  return old;  
}

This is pseudo-code! 
The hardware execute this atomically



(good) implementation of a spin lock

struct lock {  
    int held = 0;  
}  

void acquire (lock) {  
    while test-and-set(&lock->held);  
}  

void release (lock) {  
    lock->held = 0;  
}

Busy wait (a.k.a spin)
๏ Waste of CPU time
๏ Unfair access to lock



(bad) implementation of a sleeping lock

➡ Disabling interrupts blocks 
notification of external events that 
could trigger a context switch

๏ Can miss or delay important events

๏ The thread is no longer preemptive

struct lock {  
}  

void acquire (lock) {  
    disable_interrupts(); 
}  

void release (lock) {  
    enable_interrupts();  
}



(good) 
implementation 
of a sleeping lock

struct lock {  
    int held = 0; 
    queue Q;  
}  

void acquire (lock) {  
     disable_interrupts();     
     while (lock->held){ 

     enqueue(lock->Q, current_thread); 
     thread_block(current_thread); 

     } 
     lock->held = 1; 
     enable_interrupts(); 
}  

void release (lock) {  
    disable_interrupts(); 
  if (!isEmpty(lock->Q)){ 

thread_unblock(dequeue(lock->Q)); 
  } 
  lock->held = 0; 

    enable_interrupts(); 
}



Semaphore 
Implementation

struct semaphore {  
    int value; 
    queue Q;  
}  

void init(sema, value){ 
  sema->value = value; 

} 

void P (sema) {  
    disable_interrupts();     
    while (sema->value == 0){ 

    enqueue(sema->Q, current_thread); 
    thread_block(current_thread); 

    } 
    sema->value--; 
    enable_interrupts(); 
}  

void V (sema) {  
    disable_interrupts(); 
  if (!isEmpty(sema->Q)){ 

thread_unblock(dequeue(sema->Q)); 
  } 
  sema->value++; 

    enable_interrupts(); 



Other interesting 
synchronization problems



Readers Writers

➡ allow multiple readers but only one writer in the critical section

void writer () {  
  while(1){  
     write(file, data);  
  }  
}

void reader () {  
  while(1){  
     data:= read(file); 
 }  
}



Solution

1. readcount (variable) to keep track of the number of readers 
currently reading 

2. mutex (binary semaphore) to synchronize the access to readcount

3. writer_or_readers (binary semaphore) to provide exclusive 
access to each writer or all readers
• writer should wait before writing and signal after
• readers should wait when readcount goes from 0 to 1  

and signal when readcount goes from 1 to 0



Readers Writers

void writer () {  
  while(1){ 
    sem_wait(writer_or_readers) 
    write(file, data) 
    sem_signal(writer_or_readers) 
  }  
}

void reader () {  
 while(1){  
  sem_wait(mutex) 
  readcount += 1;       
  if (readcount == 1) 
  sem_wait(writer_or_readers)      

  sem_signal(mutex)      
  data:=read(file) 
  sem_wait(mutex)   
  readcount -= 1;  
  if (readcount == 0) 
  sem_signal(writer_or_readers) 
sem_signal(mutex) 

 }  
}

readcount = 0  
sem_init(mutex, 1) 
sem_init(writer_or_readers, 1)

๏ Writers starvation!



Readers Writers

void writer () {  
  while(1){ 
    sem_wait(service) 
    sem_wait(writer_or_readers) 
    sem_signal(service) 
    write(file, data) 
    sem_signal(writer_or_readers) 
  }  
}

void reader () {  
 while(1){  
  sem_wait(service) 
  sem_wait(mutex) 
  readcount += 1;       
  if (readcount == 1) 
  sem_wait(writer_or_readers) 
sem_signal(service)      

  sem_signal(mutex)      
  data:=read(file) 
  sem_wait(mutex)   
  readcount -= 1;  
  if (readcount == 0) 
  sem_signal(writer_or_readers) 
sem_signal(mutex) 

readcount = 0  
sem_init(mutex, 1) 
sem_init(writer_or_readers, 1) 
sem_init(service, 1)



Dining Philosophers

image from wikipedia

void philosopher (i, n) {  
  while(1){ 
    grab_fork(i) 
    grab_fork((i + 1)% n) 
    eat & think 
    drop_fork(i) 
    drop_fork((i + 1)% n) 
  }  
}



(Bad) Dining Philosophers

image from wikipedia

void philosopher (i, n) {  
  while(1){ 
    sem_wait(fork[i]) 
    sem_wait(fork[(i + 1)% n]) 
    eat & think 
    sem_signal(fork[i]) 
    sem_signal(fork[(i + 1)% n]) 
  }  
}

for(i=0, i<n, i++){ 
 sem_init(fork[i], 1) 

}

๏ Deadlock when each philosopher 
take the first fork "at the same time"



(Good) Dining Philosophers

image from wikipedia

void philosopher (i, n) {  
  while(1){ 
    if ((i+1) == n){ 
      sem_wait(fork[(i + 1)% n]) 
      sem_wait(fork[i]) 
    }else{ 
      sem_wait(fork[i]) 
      sem_wait(fork[(i + 1)% n]) 
    } 
    eat & think 
    sem_signal(fork[i]) 
    sem_signal(fork[(i + 1)% n]) 
  }  
}

for(i=0, i<n, i++){ 
 init(fork[i], 1) 

}
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