1 he Big Picture

Thierry Sans

Goals of this lecture

* Define what an Operating System s
» Explain how an OS works In a nutshell

* Bridge the gap between hardware (CSCB53)
and systems programming (CSCB09)

» Give an overview of the course content and projects

I he big picture In > pleces

The need for bootstrapping

The need for concurrency Drojeets
he need for user programs project 2
The need for virtual memory plieEi o

The need for a filesystem project 4

05 - 1 AT T TR T T

Simple Computer Archrtecture
Memory + Gt

LTI .

BTOS Root for a more accurate and detailled map of the x86 memory

(KK look at https://wiki.osdev.org/Memory Map_(x86)
e 000 00 00 ' &) A ’

https://wiki.osdev.org/Memory_Map_(x86)

Fach processor has its Instruction Set Architecture (ISA)

Processor executes instructions stored in memory

= [ach instruction Is a bit string that the processor understands
as an operation

B hitametic
* read/write bit strings
- [l [eree

> llaiess

v ~2000 instructions on modern x86-64 processors

s E N T T T T T O

<

stack pointer (esp)

code (text) (N

B 00 00 00

instruction pointer (eip)

Running one program

The need for bootstrapping

05 - 1 AT T TR T T

Bootstrapping

Step 5: using the terminal, users can execute programs
(e.g Bash terminal) ... and repeat

Step 4: the kernel starts the user-interface program
(e.g Bash terminal)

O]
I}
&
=
0'e
'

whoami

Terminal
Step 3:the bootloader loads the OS kernel in RAM
Step 2:the BIOS loads the bootloader from a device
Bootloader (hard-drive, USB, network ...) based on the configuration
eHLe Step | Power -on! The CPU starts excculineRessis
7Ty contained in the BIOS (basic input/output system)

00000 00

The need for concurrency

Running multiple programs one after the other

o

cpu

running

idle

A

Problem: the CPU is waiting for /O (polling)

prog A prog B

time

Problem: the programs must co-exists in memory
(coming next with virtual memory)

/O with interrupts

Interrupt

esp

code (text) |B

elp

Running multiple programs concurrently

Problem: concurrent access to /O devices

W must be synchronized

I

prog B

stack A

Problem: what if the program does not do any
|© and’ use the CRUNor afleReHiiie

"4 (aka starvation problem)

running

time

prog A

Problem: the programs and their stacks must co-
exists In memory (coming next with virtual memory)

Using the clock
to trigger an interrupt

Interrupt

esp

\4

® 00000000 0 900

000006000 0 00
elp : o0 ® o

L ® o
€Sp : L ® 0

elp

Program States

created

e

regEly. s B Unnng

| |

e terminated

Other problems that we are going to address
during the semester

- Scheduling
Decide which process to execute when severals are ready to be run

- Synchronization
Manage concurrent access to resources using semaphores, locks,
monitors

- Communication
Exchange messages between processes using IPC (sockets & signals)

- Threads
Lightwelght concurrency within a process

Achieving parallelism with
Multi-core processors

Interrupt

4 |
eip

The need for user programs

The need for abstraction for user programs

How to write a user program like the Bash shell that reads keyboard inputs
from the user?

= Read input data from the |/O device directly? But which one?

icNelic connected to the PS2 port!
S icrchieconnected to the USB!

he one connected to the bluetooth?

ne remote one connected to the network!
® User programs do not operate I/O devices directly

v The OS abstracts those functionalities and provide them as system calls

System Calls

user program

= Provide user programs with an APl to use the
services of operating system

kernel
RERERare S calesories of system calls q
[
- Process control AL e
;
* File management
* Device management B
* Information/maintenance (system configuration) RS

s Communication (IPC)

* Protection

v There are 393 system calls on Linux 3.7

http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf

http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf

In reality, many (many) level of
abstraction and modularrty

= [his is what makes developing OS
very challenging (CSCBO7/)

user program

Shell

c std lib

scanf

system lib

scanf

kernel

system call

read

kernel module

interface
get

device driver

memory

With concurrency

v From the system perspective
better CPU usage resulting in a faster execution overall
(but not individually)

v From the user perspective
programs seem to be executed In parallel

= But It requires scheduling, synchronization and some
brotection mechanisms

The need for virtual memory

The problem of managing the memory

How to make programs and execution contexts co-
exists In memory!

v Placing multiple execution contexts (stack and heap)
at random locations iIn memory Is not a problem ...
.. well, as long as your have enough memory

® However having programs placed at random
locations Is problematic

Let's look at some C code and its binary

0804840b <foo>:

#inc lude <stdio.h> 804840b: 55 push ebp
804840c: 89 e5 mov ebp,esp
804840e: 83 ec 08 sub esp,0x8
. 8048411: 83 ec 0Oc sub esp,0xc
int fOO() { 8048414: 68 d0 84 04 08 push 0x80484d0
. 1! T 8048419: e8 c2 fe ff ff call 80482e0 <printfeplt>
prlntf(hello world!") ’ 804841e: 83 c4 10 add esp,0x10
} 8048421.: 90 nop
8048422: c9 leave
8048423: c3 ret
’ ‘ . 08048424 <main>:
int main(int a rgc, char xxa FQV) { 8048424: 8d 4c 24 04 lea ecx, [esp+0x4]
fOO() . 8048428: 83 e4 fO and esp,oxfffffffo
’ 804842b: ff 71 fc push DWORD PTR [ecx—0x4]
}_ 804842e: 55 push ebp
804842f: 89 e5 mov ebp,esp
8048431: 51 push ecx
8048432: 83 ec 04 sub esp,0x4
8048435: e8 dl1 ff ff ff call 804840b <foo>
' ' 804843a: b8 00 00 00 00 mov eax,0x0
Since function addresses and others sesssf: 83 ca o4 add esp,oxd
. . 8048442: 59 pop ecx
= 8048443: 5d pop ebp
are hard-encoded In the binary,the S 3 e
‘t b | d ‘t 8048447 : c3 ret
8048448: 66 90 xchg ax,ax
program Canno e p ace a 804844a: 66 90 xchg ax,ax

804844c: 66 90 xchg ax,ax

random locations in memory sodsdde: 66 90 wcha ax.ax

o A1 o I O s T o

bhysical memory

prog A

stack B

stack A \
prog B

N

Ox 00 00 00 0O

Virtual Memory

@5 keeps frack of |
mapping table for each

the virtual memory
process and translates

the addresses dynamica

ly

Ox PP EESETasa

prog B

Ox 00 SO0 CosNue

virtual memory
for program B

Ox ' FE . EBRE b

prog A

|

0x - 0000 CISIS

virtual memory
for program A

Another problem

What if we run out of memory because of too many
concurrent programs!

v Swap memory
move some data to the disk

= Managing memory becomes very complex
but necessary

Swap

bhysical memory

hard drive

o A1 o I O s T o

prog A

stack B

stack A

prog B

Ox 00 00 00 0O

Ox PP EESETasa

prog B

Ox 00 SO0 CosNue

virtual memory
for program B

Ox ' FE . EBRE b

-

prog A

|

0x - 0000 CISIS

virtual memory
for program A

The need for a file system

/ "ROOT"
1

/BIN
"ESSENTIAL BINARIES"

CAT
CHGRP
CHMOD
CHOWN
CP
DATA
DD

DF
DMESG
ECHO
FALSE
HOSTNAME
KILL

LN
LOGIN
LS
MKDIR

"STATIC FILES OF
BOOT LOADER "

/ BOOT

KERNEL
SYSTEM.MAP
VMLINUZ
INITRD

GRUB
MODULEINFO
BOOT

MKNOD
MORE
MOUNT
'_‘ \J

PS
PWD
AM
RMDIF
SED

SH
STTY

]
/ETC

"HOST SPECIFIC
SYSTEM CONFIG"

CSH.LOGIN
EXPORTS
FSTAB
FTPUSERS
GATEWAYS
GETTYDEFS
GROUP
HOST.CONF
HOSTS
HOSTS.ALLOW
HOSTS.DENY
HOSTS.EQUIV
HOSTS.LPD
INETD.CONF
TTAB

OOLS
NETWORKS
PASSWD
PRINTCAP
PROFILE
PROTOCOLS
RESOLV.CONF
RPC

/USR
" SHAREABLE AND
READ-ONLY DATA "

— /LOCAL

"LOCAL
SOFTWARE"

/BIN

/ GAMES

/INCLUDE

/LIB

/ MAN

I SBIN

/ SHARE

/SRC

[— 7/ SHARE

" STATIC DATA
SHAREABLE
AMONG ALL

/VAR
"VARIABLE DATA FILES"

/CACHE
"APPLICATION
CACHE DATA"

/LIB

" VARIABLE STATE
INFORMATION
REMAINS AFTER
REBOOT "

YP
" DATA FOR
NIS SERVICES "

/ LOCK
"LOCK FILES FOR

|
/ SBIN

"SYSTEM BINARIES"
FASTBOOT
FASTHALT
FDISK
FSCK
GETTY
HALT
IFCONFIG
INIT
MKFS
MKSWAP
REBOOT
ROUTE
SWAPON
SWAPOFF
UPDATE

ARCHITECTURES "

/ MAN
"MANUAL PAGES"

/MAN1 "user programs"
/MAN2 "system calls"
/MAN2 "lib functions"
/MAN4 "special file"
/MANS "file formats"
/MANG "games"

SHARED RESOURCES"
[OPT

" VARIABLE DATA OF
PACKAGES INSTALLED"
/ RUN
"INFO OF SYSTEM
SINCE IT WAS BOOTED"

/TMP

= / TMP

"TEMPERORY FILES
DELETED ON BOOTUP"

™ /DEV

"LOCATION OF SPECIAL
OR DEVICEFILES
[CONTAINS MAKEDEV]"

/ HOME

" USER HOME
DIRECTORIES"

/LIB

" LIBRARY AND
KERNEL MODULES"

./ MNT

" MOUNT FILES

FOR TEMPERORY
FILESYSTEMS "

= /OPT

TMANT "mise.? "AVAILABLE FOR PROG."

Su
SYNCH
TRUE
UMOUNT
UNAME

SECURETTY
SERVICES
SHELLS
SYSLOG.CONF

/OPT

" CONFIG FILE

FOR ADD ON

APPLICATION
SOFTWARE "

— /BIN

/INCLUDE

/LIB

"OBJ ,BIN, LB
FILES FOR PROG.
AND PACKAGES "

L /SBIN

"NON ESSENTIAL
BINARIES"

Files and Directories

VEI'SUS

/ MANS "system admin."

"MOST USER COMMANDS"

"STANDARD INCLUDE
FILES FOR 'C' PROG."

——/SPOOL
"DATA AWAITING
PROCESSING "

/LPD

N L

Reality

" ADD-ON APPLICATION
SOFTWARE "

" /ROOT

"HOMEDIR. FOR
ROANT HIGER"

50, what I1s an operating system!

Operating System

= |n a nutshell,an OS manages hardware and runs programs
* cCreates and manages processes
* manages access to the memory (including RAM and 1/O)
* manages files and directories of the filesystem on disk(s)
» enforces protection mechanisms for reliability and security

* enables inter-process communication

Acknowledgments

Some of the course materials and projects are from
* Ryan Huang - teaching CS 318 at John Hopkins University

* David Maziere - teaching CS 140 at Stanford

