
The Big Picture

Thierry Sans

Goals of this lecture

• Define what an Operating System is

• Explain how an OS works in a nutshell

• Bridge the gap between hardware (CSCB58)
and systems programming (CSCB09)

• Give an overview of the course content and projects

The big picture in 5 pieces

The need for bootstrapping

The need for concurrency project 1

The need for user programs project 2

The need for virtual memory project 3

The need for a filesystem project 4

Simple Computer Architecture
Memory + CPU

RAM

I/O

0x FF FF FF FF

0x 00 00 00 00

BootBIOS for a more accurate and detailed map of the x86 memory
look at https://wiki.osdev.org/Memory_Map_(x86)

https://wiki.osdev.org/Memory_Map_(x86)

Each processor has its Instruction Set Architecture (ISA)

Processor executes instructions stored in memory

➡ Each instruction is a bit string that the processor understands
as an operation
• arithmetic
• read/write bit strings
• bit logic
• jumps

✓ ~2000 instructions on modern x86-64 processors

Running one programI/O

0x FF FF FF FF

Boot

code (text)

stack

heap

heap

instruction pointer (eip)

stack pointer (esp)

0x 00 00 00 00

The need for bootstrapping

BootstrappingI/O

0x FF FF FF FF

0x 00 00 00 00

BIOS BIOS Step 1: Power -on! The CPU starts executing code
contained in the BIOS (basic input/output system)

Step 2: the BIOS loads the bootloader from a device
(hard-drive, USB, network ...) based on the configurationBootloader

Step 3: the bootloader loads the OS kernel in RAMKernel
Terminal

Step 4: the kernel starts the user-interface program
(e.g Bash terminal)

stack

heap

Step 5: using the terminal, users can execute programs
(e.g Bash terminal) ... and repeat

whoami

The need for concurrency

Running multiple programs one after the other

prog A

stack

heap

prog B time

prog A prog B
cpu

idle

running

Problem: the CPU is waiting for I/O (polling)

Problem: the programs must co-exists in memory
(coming next with virtual memory)

I/O

I/O with interruptsI/O

Boot

Interrupt

code (text)

stack

heap

esp

eip

Running multiple programs concurrently

prog A

stack A

heap A

prog B

time
prog A

prog B

cpu

idle

running

Problem: what if the program does not do any
IO and use the CPU for a long time
(a.k.a starvation problem)

stack B

heap B

Problem: the programs and their stacks must co-
exists in memory (coming next with virtual memory)

I/O
Problem: concurrent access to I/O devices
must be synchronized

Using the clock
to trigger an interruptI/O

Boot

Interrupt

esp

eipprog A

stack A

heap A

prog B

stack B

heap B

esp

eip

Program States

created

ready

terminated

running

waiting

Other problems that we are going to address
during the semester

• Scheduling
Decide which process to execute when severals are ready to be run

• Synchronization
Manage concurrent access to resources using semaphores, locks,
monitors

• Communication
Exchange messages between processes using IPC (sockets & signals)

• Threads
Lightweight concurrency within a process

Achieving parallelism with
multi-core processorsI/O

Boot

Interrupt

code (text)

stack

heap

heap

esp

eip

core1 core2

core3 core4

The need for user programs

The need for abstraction for user programs

How to write a user program like the Bash shell that reads keyboard inputs
from the user?

➡ Read input data from the I/O device directly? But which one?
• The one connected to the PS2 port?
• The one connected to the USB?
• The one connected to the bluetooth?
• The remote one connected to the network?

๏ User programs do not operate I/O devices directly

✓ The OS abstracts those functionalities and provide them as system calls

System Calls

➡ Provide user programs with an API to use the
services of operating system

There are 5 categories of system calls
• Process control
• File management
• Device management
• Information/maintenance (system configuration)
• Communication (IPC)
• Protection

✓ There are 393 system calls on Linux 3.7
http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf

Shell

I/O

read

user program

system call

kernel

memory

http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf

In reality, many (many) level of
abstraction and modularity

➡ This is what makes developing OS
very challenging (CSCB07)

scanf

I/O

read

system lib

system call

kernel

memory

Shell

user program

load
device driver

kernel module

get
interface

scanf

c std lib

With concurrency

✓ From the system perspective
better CPU usage resulting in a faster execution overall
(but not individually)

✓ From the user perspective
programs seem to be executed in parallel

➡ But it requires scheduling, synchronization and some
protection mechanisms

The need for virtual memory

The problem of managing the memory

How to make programs and execution contexts co-
exists in memory?

✓ Placing multiple execution contexts (stack and heap)
at random locations in memory is not a problem ...
... well, as long as your have enough memory

๏ However having programs placed at random
locations is problematicprog A

stack A

heap A

prog B

stack B

heap B

Let's look at some C code and its binary

Since function addresses and others
are hard-encoded in the binary, the
program cannot be placed at
random locations in memory

Virtual Memory

prog A

stack A

heap A

prog B

stack B

heap B

prog A

stack A

heap A

prog B

stack B

heap B

0x FF FF FF FF

0x 00 00 00 00

0x 00 00 00 00

0x FF FF FF FF

0x FF FF FF FF

0x 00 00 00 00

physical memory
virtual memory
for program B

virtual memory
for program A

The OS keeps track of the virtual memory
mapping table for each process and translates
the addresses dynamically

Another problem

What if we run out of memory because of too many
concurrent programs?

✓ Swap memory
move some data to the disk

➡ Managing memory becomes very complex
but necessary

prog A

stack A

prog B

stack B

heap B

prog A

stack A

heap A

prog B

stack B

heap B

0x FF FF FF FF

0x 00 00 00 00

0x 00 00 00 00

0x FF FF FF FF

0x FF FF FF FF

0x 00 00 00 00

physical memory
virtual memory
for program B

virtual memory
for program A

hard drive

heap A

Swap

The need for a file system

Files and Directories

Reality

versus

So, what is an operating system?

Operating System

➡ In a nutshell, an OS manages hardware and runs programs
• creates and manages processes
• manages access to the memory (including RAM and I/O)
• manages files and directories of the filesystem on disk(s)
• enforces protection mechanisms for reliability and security
• enables inter-process communication

Acknowledgments

Some of the course materials and projects are from

• Ryan Huang - teaching CS 318 at John Hopkins University

• David Mazière - teaching CS 140 at Stanford

