
Deploying Fast and
Large Scale Web Applications

Thierry Sans

Users respond to speed

“Amazon found every 100ms of latency cost them 1% in sales”

“Google found an extra .5 seconds in search page generation time
dropped traffic by 20%”

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

Our microservice deployment (so far)

Reverse
Proxy

Backend
Server

Frontend
Server

Certificate
Manager

. . .

Problems

๏ How to increase the throughput?

๏ How to scale to serve millions of users?

Solutions

Reverse
Proxy

Backend
Server

Frontend
Server

✓ Faster web caching
✓ Better scalability with load balancer and CDN

✓ Web Packing
✓ Progressive Web Applications (PWA)

✓ HTTP/2
✓ HTTP/3

Frontend packing

The problem

Frontend Server

Browser GET /

GET /js/lib.js

GET /js/index.js

GET /style/index.css

GET /style/generic.css

The solution - using a frontend packer

Frontend Server

Browser

GET /

GET /js/bundle.js

e.g. webpack.js

HTTP/2

HTTP/2

HTTP/2 enables multiplexing

➡ send multiple HTTP responses for a given request (a.ka push)

• Proposed by Google (called SPDY)

• Adopted as an standard in 2015 (RFC 7540)

• HTTP/2 is compatible with HTTP/1 (same protocol)

HTTP 2.0

HTTP 1.1

GET /

GET /js/bundle.js

GET /

 200 push

200

200

200

Great technology ... but nobody uses it!

Google is planning to remove the push feature from Chrome!

"Almost five and a half years after the publication of the HTTP/2
RFC, server push is still extremely rarely used. Over the past 28
days, 99.95% of HTTP/2 connections created by Chrome never
received a pushed stream, and 99.97% of connections never
received a pushed stream that got matched with a request. These
numbers are exactly the same as in June 2019"

source https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ?pli=1

HTTP/3

(work in progress)

HTTP/3 (standard draft)

➡ Use UDP instead of TCP
Chrome in Dec'19
Firefox in Jan'20

syn
syn/ack

ack

TLS ClientHello

ack

TLS ServerHello

ack
TLS Finished

ack

HTTP Request
ack

HTTP Response

ack

fin

ack

fin

ack

TCP handshake

TLS handshake

HTTP

TCP handshake

quic

quic
quic

HTTP Request

HTTP Response

TLS handshake

HTTP

HTTP/1 & 2 HTTP/3

PWA
Progressive Web Applications

The idea

➡ A web application that can be installed on your system

• Relies on browser local storage to store the frontend
(and checks for update with the server)

• Relies on Web-Workers for caching and communication

Backend Web Caching

How to improve response time?

Processing the request means:

1. Parse the HTTP request

2. Map the URL to the handler

3. Query the database or third-party API

4. Compute the HTTP response

DB and API accesses are expensive
(time and money when your host
charges you each access)

Fine-grained caching with the web application

Memory Cache

Backend

Cache controlled by the program
๏ Specific for each app
✓ Good for caching database requests and storing sessions
➡ Popular memory cache : Memcached

Distributed Shared Cache : Memcached

http://memcached.org/

• Store key/value pairs in memory
• Throw away data that is the least recently used

http://memcached.org/

A typical cache algorithm

retrieve from cache

if data not in cache:

cache miss

query the database or API

update the cache

return result

Cache Stampede
 (a.k.a dog piling)

Problem:
Multiple concurrent requests doing the same request because
cache was cleared

Solution:
• update the cache instead of clearing it after an insert
• a page view will never query the database
➡ Requires cache warming

Backend

Cache

cache miss!

Scaling The Backend

Load Balancer

Serving multiple apps with a load balancer

Backend

Backend

Backend

Memcached

Memcached

Memcached

…

This is not an efficient cache

Frontend
Server

Certificate
Manager

Load Balancer

Distributed Shared Cache

Backend

Backend

Backend

Memcached Memcached Memcached

…

…

Frontend
Server

Certificate
Manager

Load Balancer

Database Sharding

Backend

Backend

Backend

Memcached Memcached Memcached

…

…

…

Frontend
Server

Certificate
Manager

Automatic Scaling with container Orchestration

. . .

Container Orchestrator
(like Kubernetes or Docker Swarm)

Load Balancer

Backend

Backend

Backend

Memcached Memcached Memcached

…
…

Frontend
Server

…
Certificate
Manager

CDN : Content Distribution Network

CDN

Example : Akamai, Cloudflare

edge
server

