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Users respond to speed

“Amazon found every 100ms of latency cost them 1% in sales”

“Google found an extra .5 seconds in search page generation time 
dropped traffic by 20%” 

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/


Our microservice deployment (so far)

Reverse 
Proxy

Backend 
Server

Frontend 
Server

Certificate 
Manager

. . . 



Problems

๏ How to increase the throughput? 

๏ How to scale to serve millions of users? 



Solutions
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✓ Faster web caching
✓ Better scalability with load balancer and CDN 

✓ Web Packing
✓ Progressive Web Applications (PWA)

✓ HTTP/2
✓ HTTP/3



Frontend packing



The problem

Frontend Server

Browser GET /

GET /js/lib.js

GET /js/index.js

GET /style/index.css

GET /style/generic.css



The solution - using a frontend packer

Frontend Server

Browser

GET /

GET /js/bundle.js

e.g. webpack.js



HTTP/2



HTTP/2

HTTP/2  enables multiplexing 

➡ send multiple HTTP responses for a given request (a.ka push)

• Proposed by Google (called SPDY)

• Adopted as an standard in 2015 (RFC 7540)

• HTTP/2 is compatible with HTTP/1 (same protocol)



HTTP 2.0

HTTP 1.1
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Great technology ... but nobody uses it!

Google is planning to remove the push feature from Chrome!

"Almost five and a half years after the publication of the HTTP/2 
RFC, server push is still extremely rarely used.  Over the past 28 
days, 99.95% of HTTP/2 connections created by Chrome never 
received a pushed stream, and 99.97% of connections never 
received a pushed stream that got matched with a request.  These 
numbers are exactly the same as in June 2019"

source https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ?pli=1





HTTP/3

(work in progress)



HTTP/3 (standard draft)

➡ Use UDP instead of TCP 
Chrome in Dec'19  
Firefox in Jan'20
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PWA 
Progressive Web Applications



The idea

➡ A web application that can be installed on your system

• Relies on browser local storage to store the frontend  
(and checks for update with the server)

• Relies on Web-Workers for caching and communication



Backend Web Caching



How to improve response time?

Processing the request means:

1. Parse the HTTP request

2. Map the URL to the handler

3. Query the database or third-party API

4. Compute the HTTP response

DB and API accesses are expensive  
(time and money when your host 
charges you each access)



Fine-grained caching with the web application

Memory Cache

Backend

Cache controlled by the program
๏ Specific for each app
✓ Good for caching database requests and storing sessions
➡ Popular memory cache : Memcached 



Distributed Shared Cache :  Memcached

http://memcached.org/

• Store key/value pairs in memory 
• Throw away data that is the least recently used

http://memcached.org/


A typical cache algorithm

retrieve from cache

if data not in cache:

# cache miss

query the database or API

update the cache

return result



Cache Stampede 
 (a.k.a dog piling)

Problem:
Multiple concurrent requests doing the same request because 
cache was cleared

Solution: 
• update the cache instead of clearing it after an insert
• a page view will never query the database
➡ Requires cache warming

Backend

Cache

cache miss!



Scaling The Backend



Load Balancer

Serving multiple apps with a load balancer
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This is not an efficient cache
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Load Balancer
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Load Balancer

Database Sharding
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Automatic Scaling with container Orchestration

. . . 

Container Orchestrator  
(like Kubernetes or Docker Swarm)
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CDN : Content Distribution Network

CDN

Example : Akamai, Cloudflare

edge  
server


