
Web Security

Thierry Sans

Securing the web architecture means securing ...

• The network

• The operating system

• The administration

• The web architecture

• The database

• The web application Our focus here!

https://owasp.org/Top10/

➡ Risks are ranked according to the frequency of discovered
security defects, the severity of the uncovered vulnerabilities,
and the magnitude of their potential impacts

https://owasp.org/Top10/

A02 Cryptographic Failure

 Insufficient Transport Layer Protection

How to steal user’s credentials

➡ Brute force the user’s password or session ID

➡ Steal the user’s password or session ID

Do you trust the network?

๏ Threat 1 : an attacker can eavesdrop messages sent back and forth

interesting!

Do you really trust the network?

๏ Threat 2 : an attacker can tamper with messages sent back and
forth

I am example.com!

example.com

Confidentiality and Integrity

๏ Threat 1 : an attacker can eavesdrop messages sent back and
forth
Confidentiality: how do exchange information secretly?

๏ Threat 2 : an attacker can tamper messages sent back and forth
Integrity: How do we exchange information reliably?

Generic solution - HTTPS

✓ HTTPS = HTTP + TLS

➡ Transport Layer Security (TLS previously known as SSL)
provides
• confidentiality: end-to-end secure channel
• integrity: authentication handshake

Generating and using (self-signed) certificates

who are you?

I am example.com

Self-signed certificates
are not trusted by
your browser

Signed Certificate

who are you?

Certificate Authority (CA)

I am example.com

Your browser trusts many CAs by default

Why and when using HTTPS?

HTTPS = HTTP + TLS

➡ TLS provides
• confidentiality: end-to-end secure channel
• integrity: authentication handshake

➡ HTTPS protects any data send back and forth including:
• login and password
• session ID

✓ HTTPS everywhere
HTTPS must be used during the entire session

Be careful of mixed content

Mixed-content happens when:

1. an HTTPS page contains elements (ajax, js, image, video,
css ...) served with HTTP

2. an HTTPS page transfers control to another HTTP page
within the same domain

๏ authentication cookie will be sent over HTTP
✓ browsers provide a mix-content protection now

Secure cookie flag

✓ The cookie will be sent over HTTPS exclusively

➡ Prevents authentication cookie from leaking in case of mixed-
content

Do/Don't with HTTPS

• Always use HTTPS exclusively (in production)

• Always have a valid and signed certificate (no self-signed cert)

• Always avoid using absolute URL (mixed-content)

• Always use secure cookie flag with authentication cookie

Limitation of HTTPS

Problem

Server SideClient Side

Web Server DatabaseWeb Browser

You have absolutely no control
on the client and the network

Beyond HTTPS - attacking the web application

• Cross-Site Scripting

• Cross-site Request forgery

• Incomplete Mediation

• SQL injection

Frontend Vulnerabilities Backend Vulnerabilities

A01 Broken Access Control

Incomplete Mediation

The Shopping Cart Attack

order=(#2956,10,9,90)

Server Trusted
Domain

Client Trusted Domain

* Notice that Amazon is not vulnerable to this attack

*

Thank you for your order!

The total is calculated by
a script on the client

The order is generated
based on the request

1 10

The backend is the only trusted domain

๏ Data coming from the frontend cannot be trusted

✓ Sensitive operations must be done on the backend

A03 Injection

SQL Injection

Problem

➡ An attacker can inject SQL/NoSQL code

๏ Retrieve, add, modify, delete information

๏ Bypass authentication

Checking password

name=Alice&pwd=pass4alice

/signin/
signin.html

Access Granted!

SQL Injection

db.run("SELECT * FROM users  
WHERE USERNAME = '" + username + "'  
 AND PASSWORD = '" + password + "'"

username: alice  
password: pass4alice

blah' OR '1'='1

NoSQL Injection

db.find({ username: username,  
 password: password });

username: alice  
password: pass4alice

{gt: ""}

A03 Injection

Cross-Site Scripting (XSS)

Cross-Site Scripting Attack (XSS attack)

name=CMU

“Hello CMU!”

“Hello <script language="javascript">alert(“XSS attack”);</script>!”

name=<script language="javascript">alert(“XSS attack”);</script>

XSS Attack = Javascript Code Injection

Problem

➡ An attacker can inject arbitrary javascript code
in the page that will be executed by the browser

๏ Inject illegitimate content in the page
(same as content spoofing)

๏ Perform illegitimate HTTP requests through Ajax
(same as a CSRF attack)

๏ Steal Session ID from the cookie
๏ Steal user’s login/password by modifying the page to

forge a perfect scam

comment = “<script> ...

* Notice that Youtube is not vulnerable to this attack

login=Alice&password=123456

GET /?videoid=527

<html ...

GET /?videoid=527

<html ...

The script contained in the comments
modifies the page to look like the login page!

Forging a perfect scam

It gets worst - XSS Worms

Spread on social networks

• Samy targeting MySpace (2005)

• JTV.worm targeting Justin.tv (2008)

• Twitter worm targeting Twitter (2010)

Variations on XSS attacks

• Reflected XSS
Malicious data sent to the backend are immediately sent back to
the frontend to be inserted into the DOM

• Stored XSS
Malicious data sent to the backend are store in the database and
later-on sent back to the frontend to be inserted into the DOM

• DOM-based attack
Malicious data are manipulated in the frontend (javascript) and
inserted into the DOM

Solution

✓ Data inserted in the DOM must be validated

HttpOnly cookie flag

✓ The cookie is not readable/writable from the frontend

➡ Prevents the authentication cookie from being leaked when
an XSS attack (cross-site scripting) occurs

A05 Security Misconfiguration

Cross-Site Request Forgery

Ajax requests across domains http://B.com

http://A.com

The browser does not allow js code
from domain A to access resources
from B
➡ Only HTTP response is blocked

Same origin policy

➡ Resources must come from the same domain
(protocol, host, port)

Elements under control of the same-origin policy
• Ajax requests
• Form actions

Elements not under control of the same-origin policy
• Javascript scripts
• CSS
• Images, video, sound
• Plugins

Examples

client server

same protocol,
port and host

http://example.com http://example.com

http://user:pass@example.com http://example.com

top-level domain http://example.com http://example.org

host http://example.com http://other.com

sub-host http://www.example.com http://example.com

sub-host http://example.com http://www.example.com

port http://example.com:3000 http://example.com

protocol http://example.com https://example.com

[digression] relaxing the same-origin policy

• Switch to the superdomain with javascript
www.example.com can be relaxed to example.com

• iframe

• JSONP

• Cross-Origin Resource Sharing (CORS)

Problem

➡ An attacker can executes unwanted but yet authenticated
actions on a web application by either

• setting up a malicious website with cross-origin requests
• or by injecting malicious urls into the page

Generic solution - CSRF tokens

✓ Protect legitimate requests with a CSRF token

GET /getFormView

response

POST request

CSRF Token

POST request

SameSite cookie flag

✓ The cookie will be not be sent over cross-site requests

➡ Prevents forwarding the authentication cookie over cross-
origin requests (cross-site request forgery)

Conclusion

Server SideClient Side

Web Server DatabaseWeb Browser

You have absolutely no control
on the client

References

• OWASP Top 10
https://owasp.org/www-project-top-ten/

• Mozilla Secure Coding Guideline
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

• Node Express - Production Best Practices: Security
https://expressjs.com/en/advanced/best-practice-security.html

https://owasp.org/www-project-top-ten/

