
Web Authentication

Thierry Sans

Several Methods

• Local authentication with login and password

• Token-based authentication

• Third party authentication

Local Authentication

How to store and verify password?

• Clear

• Encrypted

• Hash

• Salted Hash Salt and hash must be stored

Data can be hacked

A key is needed to store
and verify passwords

Weak passwords have known hash

Basic Authentication (stateless)

(Standard) RFC 2617

➡ Login and password are sent in clear
(Base64 encoding) in the headers "authorization"

$ curl -u login:password http://url

$ curl http://admin:password@url

Session Authentication (stateful)

(Standard) RFC 6265

1. The user enters a login and password and the
frontend send them to the backend (POST request)

2. The backend verifies the login/password based on
information stored on the server (usually in the database)

3. The backend stores user information in a session
4. The backend grants access to resources based on the

information contained in the session

Do/Don't with passwords

• On the client side, do send passwords either :
✓ in the headers (automatic with basic authentication) or
✓ in the body (POST request with session authentication)
๏ never in the URL

• On the server, do store passwords as
✓ salted hash passwords only
๏ never in clear or non-salted hash

Token-based Authentication

HMAC

(Standard) RFC 2104

For each authenticated HTTP request,
the frontend computes and send a message digest
that combines the user's secret and some request
arguments

✓ User's password never transit back and forth
(except the first time it is exchanged maybe)

✓ Digest can be send in clear

JSON Web Token

(Standard) RFC 7519

Encode user information in a string that is URL safe (token)

Token are usually authenticated and sometimes encrypted

✓ Web token can be used for stateful but yet session-less authentication

✓ Web token can be used across applications (microservices)

๏ revoking tokens can be complicated
https://medium.com/@yuliaoletskaya/can-jwt-be-used-for-sessions-4164d124fe23

https://medium.com/@yuliaoletskaya/can-jwt-be-used-for-sessions-4164d124fe23

Third-party Authentication

Single-Sign-On (SSO)

• Pubcookie (a.k.a webiso)

• OpenID

• SAML (a.k.a Shibboleth)

• OAuth

• Mozilla Persona

1998

2005

2005

2010

2011

among others …

OAuth 2

(Standard) RFC 6749

1. The backend redirects the user to the third-party login-page
2. Third-party asks and verify the login/password based on the third-

party user information
3. Third party redirects the user back to the application with a

OAuth token and verifier in the url
4. Backend verifies the token with third party
5. Backend starts a session

➡ User's login/password never transit by the application frontend nor backend

source: Choosing an SSO Strategy: SAML vs OAuth2

http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/

