
Storing Data and Files

Thierry Sans

Storing Data
in a Database

Modern Web Platform

Server SideClient Side

Web API Database

Why using a database

• Persistency

• Concurrency (avoid race conditions)

• Query

• Scalability

SQL vs NoSQL databases

Relational database (SQL database)

Data structure tables and tuples

Query language SQL

Inconvenient not-optimized for big data analysis

Advantage complex queries

Technology PostgreSQL, MySQL, MariaDB,
SQLite, MSSQL

NoSQL database

Data structure key/value pairs

Query language API style

Inconvenient not adequate for complex queries

Advantage optimized for big data analysis

Technology MongoDB, Redis, CouchDB, NeDB

ORM - Object Relational Mapping

➡ Mapping between (OOP) objects and the database structure

Examples

• Sequelize for PostgreSQL, MySQL, MariaDB, SQLite

• Mongoose for MongoDB

Do/Don't

• Do retrieve selected elements only
rather than retrieving an entire collection and filtering afterwards

• Do define primary keys
rather than relying on auto-generated ones

• Do split data into different collections
rather than storing list attributes

• Do create join collections whenever appropriate
(only for NoSQL database without performant join feature)

Retrieving collections with paginated results

➡ Only retrieve what you need from a potentially large
collection

Examples

GET /messages[?page=0]

GET /messages?page=1

GET /messages[?max=100]

GET /messages?max=20

Handling files

Browser restrictions

๏ It is impossible to write a piece of code that reads an arbitrary
file in (client-side) Javascript

➡ Only files selected by users through file input forms can be
processed

<form . . . >
 <input type="file" name="img" multiple>
 <input type="submit">
</form> [optional] select

multiple files

Sending a file from the terminal

$ curl -X POST  
 -H "Content-Type: multipart/form-data"  
 -F "picture=@localpath/to/img.png"  
 -F "username=bart"  
 http://...

Sending a file from the browser

• Form action (with page refresh)

<form action="/url"  
 method="POST"  
 enctype="multipart/form-data">

• Fetch request (without page refresh)

const file = document.get ...
const data = new FormData();  
data("picture", file);  
fetch("/api/users/", {
 method: "POST",
 body: data
})

What is received on the server

File metadata
• filename
• mimetype (file type)
• size
• and others

File content
• Compressed binary or string

MIME types

MIME (Multipurpose Internet Mail Extensions)
is also known as the content type

➡ Define the format of a document exchanged on internet
(IETF standard) http://www.iana.org/assignments/media-types/index.html

http://www.iana.org/assignments/media-types/index.html

Examples of MIME types

• text/html

• text/css

• text/javascript

• image/jpeg - image/gif - image/svg - image/png (and so on)

• application/pdf

• application/json

Example of how images are retrieved

<html>
<body>

</body>

</html>

GET hello/bart/
http://localhost/HelloYou/http://www.example.com//hello/bart/

GET images/bart.jpg

MIME : text/html

MIME : image/jpg

Do/Don't with files

• Do not send a base64 encoded file content with JSON,
use multipart/form-data instead (compression)

• Do not store uploaded files with the static content

• Do not serve uploaded files statically (security)

• Do store the mimetype and set the HTTP response header
mimetype when files are sent back

