
Design Patterns

Thierry Sans

with slides from Anya Tafliovich



Definition

A design pattern is a general description of the solution to a 
well-established problem using an arrangement of classes and 
objects

➡ Describe the shape of code rather than the details
✓ They are not specific to any one programming language
✓ Implementation differs between programming languages



Original Proposal

Original Gang of Four book in 1995  
described 23 design patterns at first 

➡ More design patterns have been added since 



Other ressources online

• http://www.oodesign.com/

• https://sourcemaking.com/design_patterns

• https://en.wikipedia.org/wiki/Software_design_pattern

http://www.oodesign.com/
https://sourcemaking.com/design_patterns
https://en.wikipedia.org/wiki/Software_design_pattern


Pattern Families

• Creational Patterns

• Structural Patterns

• Behavioral Patterns

• Concurrency Patterns (not in the original Gang of Four book)



Creational Patterns



Singleton

Ensure that only one instance of a class is created and provide a 
global access point to the object

source: http://www.oodesign.com/



Factory

Creates objects without exposing the instantiation logic to the 
client and refers to the newly created object through a 
common interface

source: http://www.oodesign.com/



Prototype

Specify the kinds of objects to create using a prototypical 
instance, and create new objects by copying this prototype

source: http://www.oodesign.com/



Behavioral Patterns



Iterator

Provide a way to access the elements of an aggregate object 
sequentially without exposing its underlying representation

source: http://www.oodesign.com/



Observer

Define a one-to-many dependency between objects so that 
when one object changes state, all its dependents are notified 
and updated automatically

source: http://www.oodesign.com/



Strategy

Define a family of algorithms, encapsulate each one, and make 
them interchangeable

source: http://www.oodesign.com/



Template Method

Define the skeleton of an algorithm in an operation, deferring 
some steps to subclasses

source: http://www.oodesign.com/



Structural Patterns



Adapter

Convert the interface of a class into another interface clients 
expect

source: http://www.oodesign.com/



Composite

Compose objects into tree structures to represent part-whole 
hierarchies

source: http://www.oodesign.com/



Decorator

Add additional responsibilities dynamically to an object

source: http://www.oodesign.com/


