
Verification and Validation

Thierry Sans  
 

with slides from Anya Tafliovich

Verification vs Validation 
from the Serendipity Blog - Steve Easterbrook

Verification : Are we building the system right?

• Does our design meet the spec?
• Does our implementation meet the spec?
• Does the delivered system do what we said it would do?
• Are our requirements consistent with one another?

Validation : Are we building the right system?

• Does our problem statement accurately capture the real problem?
• Did we account for the needs of all the stakeholders?

Verification Validation

code
inspection

static analysis

testing

prototyping

usability
test

goal analysis

unit test
acceptance
testintegration

test
automated
testing

model/spec
inspection

model
checking

proofs of
correctness

style
checkers

robustness
analysis

consistency
checking

beta test

system test

regression
test

modeling

from the Serendipity Blog - Steve Easterbrook

Mainly 3 approaches for verification and validation

• Test - experiment with the program

• Review - inspect the program and the specs

• Verify - reason about the program

Testing

Testing to detect defects and failures

Defects (may) lead to failures:
๏ but the failure may show up somewhere else
➡ tracking the failure back to a defect can be hard

• Missing requirement
• Specification wrong
• Requirement that was

infeasible

• Faulty system design
• Wrong algorithms
• Faulty implementation

Many causes of defects in software

Defects

Syntax
• Incorrect use of programming

constructs
Algorithmic
• Branching too soon or too late
• Testing for the wrong condition
• Failure to initialize correctly
• Failure to test for exceptions
• Type mismatch

Precision
• Mixed precision, floating point

conversion, etc.

Stress
• Overflowing buffers, etc.

Timing
• Processes fail to synchronize
• Wrong order of events

Throughput
• Performance lower than required

Recovery faults
• Incorrect recovery after another

failure
Documentation
• Design docs or user manual is wrong

The testing pipeline

Unit
test

Unit
test

Integration
test

Function
test

Performance
test

Acceptance
test

Installation
test

Unit
test

.

.

.

C
om

ponent
code

C
om

ponent
code

C
om

ponent
code

Design
Specs

Functional
Requirements

Quality
Requirements

Customer
Goals

User
environment

source: adapted from Pfleeger & Atlee 2006

Beta-testing

Customers test for free
➡ Gives test cases representative of customer use
✓ Helps to determine what is most important to the customers
✓ Can do more configuration (environment) testing than in your testing lab
๏ Beta testers might have a particular perspective to the system 

may result in not catching diverse system bugs
๏ Beta testers usually will not report usability problems, bugs they do not understand, and

bugs that seem obvious
๏ Most beta testers are “techies” who have a higher tolerance of bugs  

They do not represent the average customer
๏ Takes much more time and effort to handle a user reported bug

White-Box Testing

Test the structural parts of the software

➡ The tester has explicit knowledge about the internals

๏ Biased, the tester chooses specific paths and determines the
appropriate output

✓ Can be applied at the unit, integration and system levels

Black-Box Testing

Test functional requirements of a program

➡ The tester has no prior knowledge to the internals

✓ Unbiased, no programming knowledge needed

✓ Test cases can be made very early on after specs are done

๏ Cannot identify all possible test case

๏ Can be redundant

Example

def search(lst, elt):
 '''Return the index of the first
 occurrence of elt in the list lst. If
 elt is not in lst, raise
 NoSuchElementError.
 Pre: lst is sorted in non-decreasing
 order.
 '''

Testing in Agile

Testing Principles in Agile

1. Developers defines the unit tests
➡ Driven by the actual implementation

2. Product owner defines the acceptance tests
➡ Driven by user stories

3. Automated Testing is mandated

TDD - Test Driven Development

➡ Create automated tests before writing the code itself

TDD Methodology

1. Add a new test to the test suites based on requirements  
(before implementing the new feature)

2. Run new the test along with others previously in the test suite  
(new one should fail, old ones should succeed)

3. Write rough code

4. Run all tests and debug code until they all pass

5. Re-factor code and keep-on testing

6. Repeat

