
Design Principles

Thierry Sans

with slides from Anya Tafliovich

SOLID

Single responsibility principle

Open/closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

Single Responsibility Principle

Every class should have a single responsibility and that
responsibility should be entirely encapsulated by the class

➡ Also referred as the cohesion principle

Open/Closed Principle

Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification

➡ Also referred as the information hiding principle

An example of bad design

An example of a bad solution

A good solution

Liskov Substitution Principle

If S is a subtype of T, then objects of type T may be
substituted for objects of type S, without altering
any of the desired properties of the program

➡ Also referred as the strong behavioral subtyping principle

An example of bad design

Interface Segregation Principle

No client should be forced to depend on methods it does
not use

➡ Also referred as the high cohesion principle

Dependency inversion principle

Dependency relationship between high-level module and low-
level module are reversed

• High-level modules should not depend on low-level modules
Both should depend on abstractions

• Abstractions should not depend on details. Details should
depend on abstractions

➡ Also referred as the decoupling principle

An example of bad design

An example of good design

Coming next

Many Design Patterns follow the SOLID principles

