Design Principles

Thierry Sans

with slides from Anya lafliovich

SOLID

Single responsibility principle
Open/closed principle

Liskov substitution principle
Interface segregation principle

Dependency inversion principle

Single Responsibility Principle

Every class should have a single responsibility and that
responsibility should be entirely encapsulated by the class

= Also referred as the cohesion principle

Open/Closed Principle

Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification

= Also referred as the information hiding principle

An example of bad design

Rectangle AreaCalculator
- width: double - ——- + area(shapes: Rectangle []): double
- height: double
+ getWidth(): double

+ getHeight(): double
+ setWidth(w: double): void
+ setHeight(h: double): void

An example of a bad solution

Rectangle

- width: double
- height: double

+ getWidth(): double
+ getHeight(): double
+ setWidth(w: double): void
+ setHeight(h: double): void

L

7’

Circle

- radius: double

+ getRadius(): double
+ setRadius(r: double): void

AreaCalculator

+ area(shapes: Object []): double

A good solution

Shape AreaCalculator
+ area(): double e + area(shapes: Shape []): double
Circle Rectangle

- radius: double - width: double
+ getRadius(): double - height: double
+ setRadius(r: double): void + getWidth(): double
+ areal): double + getHeight(): double

+ setWidth(w: double): void

+ setHeight(h: double): void

+ area(): double

Liskov Substitution Principle

TS 1s a subtype of 1, then objects of type T may be
substituted for objects of type S, without altering
any of the desired properties of the program

= Also referred as the strong behavioral subtyping principle

An example of bad design

Rectangle

width: double
height: double

+ Rectangle(w: double, h: double)
+ getWidth(): double

+ setWidth(w: double): void

+ getHeight(): double

+ setHeight(h: double): void

+ area(): double

Ja)

Square

+ Square(w: double)
7?7

Interface Segregation Principle

No client should be forced to depend on methods it does
not use

= Also referred as the high cohesion principle

Dependency inversion principle

Dependency relationship between high-level module and low-
level module are reversed

* High-level modules should not depend on low-level modules
Both should depend on abstractions

» Abstractions should not depend on details. Details should
depend on abstractions

= Also referred as the decoupling principle

An example of bad design

Worker Manager
+ work() - worker: Worker
+ setWorker(w: Worker)
+ managel)
SuperWorker

+ work()

An example of good design

«interface» Manager
|___IWorker | <-—-——-- - worker: IWorker
+ work() + setWorker(w: IWorker)
ﬂ R + managel)
/ \

/7 \
/ \
/ \
SuperWorker | [Worker

Coming next

Many Design Patterns follow the SOLID principles

